AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.061 | 0.808 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000132 |
Time: | 04:42:46 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.1824 | 210.948 | 0.157 | 0.877 | -408.337 474.702 |
C(dose)[T.1] | 147.9361 | 281.426 | 0.526 | 0.605 | -441.095 736.967 |
expression | 2.5994 | 26.068 | 0.100 | 0.922 | -51.962 57.161 |
expression:C(dose)[T.1] | -11.1161 | 33.823 | -0.329 | 0.746 | -81.908 59.676 |
Omnibus: | 0.277 | Durbin-Watson: | 1.813 |
Prob(Omnibus): | 0.871 | Jarque-Bera (JB): | 0.457 |
Skew: | 0.040 | Prob(JB): | 0.796 |
Kurtosis: | 2.314 | Cond. No. | 721. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.75e-05 |
Time: | 04:42:46 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.5935 | 131.460 | 0.659 | 0.518 | -187.626 360.813 |
C(dose)[T.1] | 55.5397 | 12.508 | 4.440 | 0.000 | 29.449 81.630 |
expression | -4.0038 | 16.235 | -0.247 | 0.808 | -37.870 29.862 |
Omnibus: | 0.277 | Durbin-Watson: | 1.889 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.068 | Prob(JB): | 0.795 |
Kurtosis: | 2.322 | Cond. No. | 256. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:42:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.305 |
Model: | OLS | Adj. R-squared: | 0.272 |
Method: | Least Squares | F-statistic: | 9.224 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00627 |
Time: | 04:42:46 | Log-Likelihood: | -108.92 |
No. Observations: | 23 | AIC: | 221.8 |
Df Residuals: | 21 | BIC: | 224.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -316.7645 | 130.686 | -2.424 | 0.024 | -588.540 -44.989 |
expression | 47.4730 | 15.631 | 3.037 | 0.006 | 14.966 79.980 |
Omnibus: | 1.580 | Durbin-Watson: | 2.329 |
Prob(Omnibus): | 0.454 | Jarque-Bera (JB): | 1.173 |
Skew: | 0.318 | Prob(JB): | 0.556 |
Kurtosis: | 2.095 | Cond. No. | 184. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.066 | 0.802 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.321 |
Method: | Least Squares | F-statistic: | 3.207 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0658 |
Time: | 04:42:46 | Log-Likelihood: | -70.587 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 172.7631 | 330.959 | 0.522 | 0.612 | -555.673 901.199 |
C(dose)[T.1] | -174.3437 | 402.736 | -0.433 | 0.673 | -1060.759 712.071 |
expression | -15.7459 | 49.442 | -0.318 | 0.756 | -124.567 93.075 |
expression:C(dose)[T.1] | 32.9781 | 59.675 | 0.553 | 0.592 | -98.365 164.322 |
Omnibus: | 3.075 | Durbin-Watson: | 0.704 |
Prob(Omnibus): | 0.215 | Jarque-Bera (JB): | 1.980 |
Skew: | -0.883 | Prob(JB): | 0.372 |
Kurtosis: | 2.773 | Cond. No. | 501. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.944 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0271 |
Time: | 04:42:46 | Log-Likelihood: | -70.792 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 21.3250 | 180.131 | 0.118 | 0.908 | -371.146 413.796 |
C(dose)[T.1] | 48.0254 | 16.347 | 2.938 | 0.012 | 12.408 83.643 |
expression | 6.8918 | 26.872 | 0.256 | 0.802 | -51.658 65.441 |
Omnibus: | 2.763 | Durbin-Watson: | 0.787 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.865 |
Skew: | -0.847 | Prob(JB): | 0.394 |
Kurtosis: | 2.662 | Cond. No. | 160. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:42:46 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.057 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.7928 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.389 |
Time: | 04:42:46 | Log-Likelihood: | -74.856 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -102.5682 | 220.614 | -0.465 | 0.650 | -579.177 374.040 |
expression | 28.9421 | 32.505 | 0.890 | 0.389 | -41.281 99.165 |
Omnibus: | 0.357 | Durbin-Watson: | 1.495 |
Prob(Omnibus): | 0.836 | Jarque-Bera (JB): | 0.478 |
Skew: | -0.017 | Prob(JB): | 0.787 |
Kurtosis: | 2.126 | Cond. No. | 155. |