AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.311 | 0.583 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.703 |
Model: | OLS | Adj. R-squared: | 0.656 |
Method: | Least Squares | F-statistic: | 14.96 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.07e-05 |
Time: | 05:05:21 | Log-Likelihood: | -99.162 |
No. Observations: | 23 | AIC: | 206.3 |
Df Residuals: | 19 | BIC: | 210.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 227.9486 | 149.604 | 1.524 | 0.144 | -85.176 541.074 |
C(dose)[T.1] | -247.5153 | 173.902 | -1.423 | 0.171 | -611.496 116.466 |
expression | -21.0735 | 18.133 | -1.162 | 0.260 | -59.026 16.879 |
expression:C(dose)[T.1] | 37.7130 | 21.515 | 1.753 | 0.096 | -7.317 82.744 |
Omnibus: | 0.127 | Durbin-Watson: | 1.552 |
Prob(Omnibus): | 0.939 | Jarque-Bera (JB): | 0.134 |
Skew: | 0.126 | Prob(JB): | 0.935 |
Kurtosis: | 2.724 | Cond. No. | 483. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.43e-05 |
Time: | 05:05:21 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 7.0912 | 84.741 | 0.084 | 0.934 | -169.675 183.857 |
C(dose)[T.1] | 56.7967 | 10.689 | 5.314 | 0.000 | 34.500 79.093 |
expression | 5.7150 | 10.253 | 0.557 | 0.583 | -15.671 27.101 |
Omnibus: | 0.884 | Durbin-Watson: | 1.984 |
Prob(Omnibus): | 0.643 | Jarque-Bera (JB): | 0.751 |
Skew: | 0.095 | Prob(JB): | 0.687 |
Kurtosis: | 2.136 | Cond. No. | 158. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.167 |
Model: | OLS | Adj. R-squared: | 0.127 |
Method: | Least Squares | F-statistic: | 4.197 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0532 |
Time: | 05:05:21 | Log-Likelihood: | -111.01 |
No. Observations: | 23 | AIC: | 226.0 |
Df Residuals: | 21 | BIC: | 228.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 285.8850 | 100.851 | 2.835 | 0.010 | 76.154 495.616 |
expression | -25.9168 | 12.651 | -2.049 | 0.053 | -52.225 0.392 |
Omnibus: | 2.476 | Durbin-Watson: | 1.884 |
Prob(Omnibus): | 0.290 | Jarque-Bera (JB): | 1.895 |
Skew: | 0.550 | Prob(JB): | 0.388 |
Kurtosis: | 2.124 | Cond. No. | 124. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.023 | 0.883 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.300 |
Method: | Least Squares | F-statistic: | 3.001 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0768 |
Time: | 05:05:21 | Log-Likelihood: | -70.815 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 11.6471 | 384.962 | 0.030 | 0.976 | -835.648 858.943 |
C(dose)[T.1] | 85.8019 | 465.008 | 0.185 | 0.857 | -937.674 1109.278 |
expression | 6.2124 | 42.853 | 0.145 | 0.887 | -88.105 100.530 |
expression:C(dose)[T.1] | -3.9719 | 52.569 | -0.076 | 0.941 | -119.675 111.731 |
Omnibus: | 2.204 | Durbin-Watson: | 0.822 |
Prob(Omnibus): | 0.332 | Jarque-Bera (JB): | 1.577 |
Skew: | -0.759 | Prob(JB): | 0.455 |
Kurtosis: | 2.531 | Cond. No. | 720. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.905 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 05:05:21 | Log-Likelihood: | -70.819 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 35.3458 | 213.744 | 0.165 | 0.871 | -430.362 501.054 |
C(dose)[T.1] | 50.6986 | 18.632 | 2.721 | 0.019 | 10.103 91.294 |
expression | 3.5731 | 23.770 | 0.150 | 0.883 | -48.218 55.364 |
Omnibus: | 2.201 | Durbin-Watson: | 0.825 |
Prob(Omnibus): | 0.333 | Jarque-Bera (JB): | 1.573 |
Skew: | -0.758 | Prob(JB): | 0.455 |
Kurtosis: | 2.533 | Cond. No. | 243. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.110 |
Model: | OLS | Adj. R-squared: | 0.042 |
Method: | Least Squares | F-statistic: | 1.612 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.226 |
Time: | 05:05:21 | Log-Likelihood: | -74.423 |
No. Observations: | 15 | AIC: | 152.8 |
Df Residuals: | 13 | BIC: | 154.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 366.1193 | 214.795 | 1.705 | 0.112 | -97.918 830.156 |
expression | -31.1203 | 24.510 | -1.270 | 0.226 | -84.071 21.830 |
Omnibus: | 0.439 | Durbin-Watson: | 1.525 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.362 |
Skew: | -0.318 | Prob(JB): | 0.835 |
Kurtosis: | 2.583 | Cond. No. | 199. |