AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.906 0.353 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.739
Model: OLS Adj. R-squared: 0.698
Method: Least Squares F-statistic: 17.93
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.07e-06
Time: 22:50:01 Log-Likelihood: -97.657
No. Observations: 23 AIC: 203.3
Df Residuals: 19 BIC: 207.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 353.2471 204.742 1.725 0.101 -75.284 781.778
C(dose)[T.1] -512.3362 240.958 -2.126 0.047 -1016.667 -8.006
expression -48.1299 32.942 -1.461 0.160 -117.078 20.818
expression:C(dose)[T.1] 89.5530 38.392 2.333 0.031 9.197 169.909
Omnibus: 0.284 Durbin-Watson: 1.680
Prob(Omnibus): 0.867 Jarque-Bera (JB): 0.105
Skew: -0.151 Prob(JB): 0.949
Kurtosis: 2.865 Cond. No. 582.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.79
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.82e-05
Time: 22:50:01 Log-Likelihood: -100.55
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.3868 116.357 -0.485 0.633 -299.104 186.330
C(dose)[T.1] 49.3549 9.544 5.171 0.000 29.447 69.263
expression 17.8002 18.703 0.952 0.353 -21.214 56.814
Omnibus: 0.123 Durbin-Watson: 1.847
Prob(Omnibus): 0.940 Jarque-Bera (JB): 0.201
Skew: 0.145 Prob(JB): 0.904
Kurtosis: 2.646 Cond. No. 177.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.215
Model: OLS Adj. R-squared: 0.178
Method: Least Squares F-statistic: 5.763
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0257
Time: 22:50:02 Log-Likelihood: -110.32
No. Observations: 23 AIC: 224.6
Df Residuals: 21 BIC: 226.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -300.7845 158.633 -1.896 0.072 -630.680 29.111
expression 60.2046 25.079 2.401 0.026 8.050 112.360
Omnibus: 2.860 Durbin-Watson: 2.116
Prob(Omnibus): 0.239 Jarque-Bera (JB): 1.266
Skew: -0.072 Prob(JB): 0.531
Kurtosis: 1.860 Cond. No. 161.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.767 0.398 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.491
Model: OLS Adj. R-squared: 0.353
Method: Least Squares F-statistic: 3.543
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0516
Time: 22:50:02 Log-Likelihood: -70.229
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.1395 178.364 -0.062 0.951 -403.716 381.437
C(dose)[T.1] -102.7512 324.000 -0.317 0.757 -815.871 610.369
expression 13.9910 31.696 0.441 0.667 -55.771 83.753
expression:C(dose)[T.1] 25.4489 56.062 0.454 0.659 -97.942 148.840
Omnibus: 2.169 Durbin-Watson: 0.791
Prob(Omnibus): 0.338 Jarque-Bera (JB): 1.576
Skew: -0.629 Prob(JB): 0.455
Kurtosis: 2.031 Cond. No. 301.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 5.581
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0193
Time: 22:50:02 Log-Likelihood: -70.368
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.8204 142.311 -0.399 0.697 -366.888 253.248
C(dose)[T.1] 44.1268 16.321 2.704 0.019 8.567 79.686
expression 22.1256 25.264 0.876 0.398 -32.920 77.171
Omnibus: 2.419 Durbin-Watson: 0.923
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.830
Skew: -0.739 Prob(JB): 0.400
Kurtosis: 2.139 Cond. No. 111.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.166
Model: OLS Adj. R-squared: 0.102
Method: Least Squares F-statistic: 2.592
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.131
Time: 22:50:02 Log-Likelihood: -73.936
No. Observations: 15 AIC: 151.9
Df Residuals: 13 BIC: 153.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -172.3013 165.448 -1.041 0.317 -529.730 185.127
expression 46.3536 28.789 1.610 0.131 -15.842 108.549
Omnibus: 0.545 Durbin-Watson: 1.804
Prob(Omnibus): 0.762 Jarque-Bera (JB): 0.557
Skew: 0.013 Prob(JB): 0.757
Kurtosis: 2.056 Cond. No. 106.