AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.898 | 0.104 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.699 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 14.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.42e-05 |
Time: | 05:02:49 | Log-Likelihood: | -99.294 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -4.6750 | 81.394 | -0.057 | 0.955 | -175.035 165.685 |
C(dose)[T.1] | -17.2193 | 114.120 | -0.151 | 0.882 | -256.074 221.636 |
expression | 11.4201 | 15.746 | 0.725 | 0.477 | -21.538 44.378 |
expression:C(dose)[T.1] | 12.9656 | 21.766 | 0.596 | 0.558 | -32.591 58.522 |
Omnibus: | 1.607 | Durbin-Watson: | 2.171 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.426 |
Skew: | 0.522 | Prob(JB): | 0.490 |
Kurtosis: | 2.370 | Cond. No. | 195. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 22.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.32e-06 |
Time: | 05:02:49 | Log-Likelihood: | -99.506 |
No. Observations: | 23 | AIC: | 205.0 |
Df Residuals: | 20 | BIC: | 208.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -39.6635 | 55.431 | -0.716 | 0.483 | -155.291 75.964 |
C(dose)[T.1] | 50.5713 | 8.356 | 6.052 | 0.000 | 33.142 68.001 |
expression | 18.2060 | 10.694 | 1.702 | 0.104 | -4.102 40.514 |
Omnibus: | 1.730 | Durbin-Watson: | 2.205 |
Prob(Omnibus): | 0.421 | Jarque-Bera (JB): | 1.435 |
Skew: | 0.463 | Prob(JB): | 0.488 |
Kurtosis: | 2.199 | Cond. No. | 73.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:02:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.132 |
Model: | OLS | Adj. R-squared: | 0.091 |
Method: | Least Squares | F-statistic: | 3.195 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0883 |
Time: | 05:02:49 | Log-Likelihood: | -111.48 |
No. Observations: | 23 | AIC: | 227.0 |
Df Residuals: | 21 | BIC: | 229.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -81.2827 | 90.325 | -0.900 | 0.378 | -269.123 106.558 |
expression | 30.7913 | 17.227 | 1.787 | 0.088 | -5.034 66.616 |
Omnibus: | 1.606 | Durbin-Watson: | 2.993 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.129 |
Skew: | 0.275 | Prob(JB): | 0.569 |
Kurtosis: | 2.064 | Cond. No. | 73.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.835 | 0.379 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.541 |
Model: | OLS | Adj. R-squared: | 0.416 |
Method: | Least Squares | F-statistic: | 4.330 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0303 |
Time: | 05:02:49 | Log-Likelihood: | -69.452 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.7976 | 169.814 | 0.788 | 0.447 | -239.961 507.556 |
C(dose)[T.1] | -187.4429 | 207.220 | -0.905 | 0.385 | -643.531 268.645 |
expression | -11.3652 | 29.019 | -0.392 | 0.703 | -75.236 52.505 |
expression:C(dose)[T.1] | 42.0577 | 36.013 | 1.168 | 0.268 | -37.207 121.322 |
Omnibus: | 0.854 | Durbin-Watson: | 1.183 |
Prob(Omnibus): | 0.652 | Jarque-Bera (JB): | 0.790 |
Skew: | -0.441 | Prob(JB): | 0.674 |
Kurtosis: | 2.302 | Cond. No. | 231. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.485 |
Model: | OLS | Adj. R-squared: | 0.399 |
Method: | Least Squares | F-statistic: | 5.642 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0187 |
Time: | 05:02:49 | Log-Likelihood: | -70.328 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.6714 | 102.470 | -0.251 | 0.806 | -248.934 197.591 |
C(dose)[T.1] | 53.8522 | 16.049 | 3.356 | 0.006 | 18.885 88.820 |
expression | 15.9427 | 17.444 | 0.914 | 0.379 | -22.064 53.949 |
Omnibus: | 1.487 | Durbin-Watson: | 0.824 |
Prob(Omnibus): | 0.476 | Jarque-Bera (JB): | 1.188 |
Skew: | -0.609 | Prob(JB): | 0.552 |
Kurtosis: | 2.354 | Cond. No. | 79.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:02:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01420 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.907 |
Time: | 05:02:49 | Log-Likelihood: | -75.292 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 108.6524 | 126.173 | 0.861 | 0.405 | -163.927 381.232 |
expression | -2.6365 | 22.126 | -0.119 | 0.907 | -50.437 45.164 |
Omnibus: | 0.697 | Durbin-Watson: | 1.607 |
Prob(Omnibus): | 0.706 | Jarque-Bera (JB): | 0.615 |
Skew: | 0.054 | Prob(JB): | 0.735 |
Kurtosis: | 2.014 | Cond. No. | 73.0 |