AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.034 | 0.855 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.606 |
Method: | Least Squares | F-statistic: | 12.26 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000108 |
Time: | 22:50:02 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.5104 | 271.665 | 0.447 | 0.660 | -447.090 690.111 |
C(dose)[T.1] | -317.4278 | 501.711 | -0.633 | 0.534 | -1367.522 732.666 |
expression | -6.7561 | 27.264 | -0.248 | 0.807 | -63.820 50.308 |
expression:C(dose)[T.1] | 37.0533 | 50.163 | 0.739 | 0.469 | -67.938 142.045 |
Omnibus: | 0.116 | Durbin-Watson: | 1.789 |
Prob(Omnibus): | 0.944 | Jarque-Bera (JB): | 0.323 |
Skew: | 0.098 | Prob(JB): | 0.851 |
Kurtosis: | 2.453 | Cond. No. | 1.36e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.54 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.79e-05 |
Time: | 22:50:02 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 12.4725 | 225.454 | 0.055 | 0.956 | -457.817 482.762 |
C(dose)[T.1] | 53.1087 | 8.849 | 6.002 | 0.000 | 34.651 71.567 |
expression | 4.1896 | 22.624 | 0.185 | 0.855 | -43.003 51.382 |
Omnibus: | 0.315 | Durbin-Watson: | 1.898 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.481 |
Skew: | 0.058 | Prob(JB): | 0.786 |
Kurtosis: | 2.301 | Cond. No. | 520. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:50:02 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.019 |
Model: | OLS | Adj. R-squared: | -0.028 |
Method: | Least Squares | F-statistic: | 0.3991 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.534 |
Time: | 22:50:03 | Log-Likelihood: | -112.89 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.1530 | 365.537 | -0.414 | 0.683 | -911.328 609.023 |
expression | 23.1153 | 36.591 | 0.632 | 0.534 | -52.981 99.211 |
Omnibus: | 2.412 | Durbin-Watson: | 2.534 |
Prob(Omnibus): | 0.299 | Jarque-Bera (JB): | 1.274 |
Skew: | 0.211 | Prob(JB): | 0.529 |
Kurtosis: | 1.927 | Cond. No. | 516. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.065 | 0.804 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.500 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 3.669 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0472 |
Time: | 22:50:03 | Log-Likelihood: | -70.099 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 345.7804 | 304.378 | 1.136 | 0.280 | -324.151 1015.712 |
C(dose)[T.1] | -391.8043 | 427.592 | -0.916 | 0.379 | -1332.928 549.319 |
expression | -27.9813 | 30.576 | -0.915 | 0.380 | -95.279 39.316 |
expression:C(dose)[T.1] | 44.2647 | 42.868 | 1.033 | 0.324 | -50.088 138.617 |
Omnibus: | 1.426 | Durbin-Watson: | 0.735 |
Prob(Omnibus): | 0.490 | Jarque-Bera (JB): | 1.160 |
Skew: | -0.532 | Prob(JB): | 0.560 |
Kurtosis: | 2.149 | Cond. No. | 736. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.943 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0272 |
Time: | 22:50:03 | Log-Likelihood: | -70.793 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.7668 | 214.083 | 0.569 | 0.580 | -344.681 588.215 |
C(dose)[T.1] | 49.4199 | 15.722 | 3.143 | 0.008 | 15.164 83.675 |
expression | -5.4624 | 21.490 | -0.254 | 0.804 | -52.285 41.360 |
Omnibus: | 2.977 | Durbin-Watson: | 0.822 |
Prob(Omnibus): | 0.226 | Jarque-Bera (JB): | 1.903 |
Skew: | -0.865 | Prob(JB): | 0.386 |
Kurtosis: | 2.777 | Cond. No. | 276. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:50:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.003666 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.953 |
Time: | 22:50:04 | Log-Likelihood: | -75.298 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 110.4706 | 277.703 | 0.398 | 0.697 | -489.470 710.411 |
expression | -1.6855 | 27.836 | -0.061 | 0.953 | -61.822 58.451 |
Omnibus: | 0.678 | Durbin-Watson: | 1.637 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.609 |
Skew: | 0.059 | Prob(JB): | 0.737 |
Kurtosis: | 2.020 | Cond. No. | 275. |