AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.944 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.06 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000119 |
Time: | 06:23:20 | Log-Likelihood: | -100.84 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.2238 | 98.047 | 0.992 | 0.334 | -107.992 302.439 |
C(dose)[T.1] | -39.0797 | 153.188 | -0.255 | 0.801 | -359.706 281.547 |
expression | -6.6079 | 15.032 | -0.440 | 0.665 | -38.070 24.854 |
expression:C(dose)[T.1] | 14.2226 | 23.540 | 0.604 | 0.553 | -35.047 63.492 |
Omnibus: | 0.663 | Durbin-Watson: | 1.874 |
Prob(Omnibus): | 0.718 | Jarque-Bera (JB): | 0.651 |
Skew: | -0.040 | Prob(JB): | 0.722 |
Kurtosis: | 2.180 | Cond. No. | 286. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 06:23:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.4693 | 74.347 | 0.800 | 0.433 | -95.615 214.553 |
C(dose)[T.1] | 53.3193 | 8.772 | 6.078 | 0.000 | 35.020 71.618 |
expression | -0.8082 | 11.383 | -0.071 | 0.944 | -24.552 22.936 |
Omnibus: | 0.343 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.842 | Jarque-Bera (JB): | 0.497 |
Skew: | 0.051 | Prob(JB): | 0.780 |
Kurtosis: | 2.287 | Cond. No. | 113. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:23:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.02217 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.883 |
Time: | 06:23:20 | Log-Likelihood: | -113.09 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.8496 | 121.983 | 0.802 | 0.431 | -155.829 351.528 |
expression | -2.7899 | 18.736 | -0.149 | 0.883 | -41.754 36.174 |
Omnibus: | 3.112 | Durbin-Watson: | 2.494 |
Prob(Omnibus): | 0.211 | Jarque-Bera (JB): | 1.540 |
Skew: | 0.295 | Prob(JB): | 0.463 |
Kurtosis: | 1.878 | Cond. No. | 113. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.178 | 0.681 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.310 |
Method: | Least Squares | F-statistic: | 3.094 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0716 |
Time: | 06:23:20 | Log-Likelihood: | -70.712 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 145.1751 | 239.526 | 0.606 | 0.557 | -382.017 672.367 |
C(dose)[T.1] | 15.5540 | 289.531 | 0.054 | 0.958 | -621.700 652.808 |
expression | -13.2375 | 40.732 | -0.325 | 0.751 | -102.889 76.414 |
expression:C(dose)[T.1] | 6.1684 | 48.328 | 0.128 | 0.901 | -100.201 112.538 |
Omnibus: | 2.604 | Durbin-Watson: | 0.932 |
Prob(Omnibus): | 0.272 | Jarque-Bera (JB): | 1.679 |
Skew: | -0.808 | Prob(JB): | 0.432 |
Kurtosis: | 2.731 | Cond. No. | 325. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.366 |
Method: | Least Squares | F-statistic: | 5.046 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0257 |
Time: | 06:23:20 | Log-Likelihood: | -70.723 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.4399 | 123.885 | 0.964 | 0.354 | -150.482 389.362 |
C(dose)[T.1] | 52.4357 | 17.411 | 3.012 | 0.011 | 14.500 90.371 |
expression | -8.8557 | 21.004 | -0.422 | 0.681 | -54.619 36.907 |
Omnibus: | 2.666 | Durbin-Watson: | 0.906 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.658 |
Skew: | -0.808 | Prob(JB): | 0.436 |
Kurtosis: | 2.793 | Cond. No. | 99.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:23:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.046 |
Model: | OLS | Adj. R-squared: | -0.027 |
Method: | Least Squares | F-statistic: | 0.6307 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.441 |
Time: | 06:23:20 | Log-Likelihood: | -74.945 |
No. Observations: | 15 | AIC: | 153.9 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -21.9712 | 145.949 | -0.151 | 0.883 | -337.275 293.333 |
expression | 19.0561 | 23.996 | 0.794 | 0.441 | -32.783 70.895 |
Omnibus: | 0.558 | Durbin-Watson: | 1.425 |
Prob(Omnibus): | 0.757 | Jarque-Bera (JB): | 0.562 |
Skew: | -0.001 | Prob(JB): | 0.755 |
Kurtosis: | 2.052 | Cond. No. | 91.9 |