AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.812 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.89
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000130
Time: 19:05:00 Log-Likelihood: -100.95
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.6778 107.394 0.472 0.642 -174.101 275.456
C(dose)[T.1] -26.9663 221.987 -0.121 0.905 -491.590 437.658
expression 0.5180 15.730 0.033 0.974 -32.405 33.441
expression:C(dose)[T.1] 11.9303 32.844 0.363 0.720 -56.812 80.673
Omnibus: 0.670 Durbin-Watson: 1.917
Prob(Omnibus): 0.715 Jarque-Bera (JB): 0.697
Skew: 0.185 Prob(JB): 0.706
Kurtosis: 2.232 Cond. No. 401.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.75e-05
Time: 19:05:00 Log-Likelihood: -101.03
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.0259 92.253 0.347 0.732 -160.411 224.463
C(dose)[T.1] 53.6024 8.826 6.073 0.000 35.192 72.013
expression 3.2544 13.505 0.241 0.812 -24.917 31.426
Omnibus: 0.390 Durbin-Watson: 1.857
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.527
Skew: 0.089 Prob(JB): 0.768
Kurtosis: 2.280 Cond. No. 147.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:05:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.1000
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.755
Time: 19:05:00 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.9874 149.637 0.849 0.406 -184.199 438.174
expression -6.9749 22.054 -0.316 0.755 -52.839 38.889
Omnibus: 3.613 Durbin-Watson: 2.486
Prob(Omnibus): 0.164 Jarque-Bera (JB): 1.608
Skew: 0.276 Prob(JB): 0.448
Kurtosis: 1.828 Cond. No. 144.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.171 0.686 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.522
Model: OLS Adj. R-squared: 0.392
Method: Least Squares F-statistic: 4.003
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0376
Time: 19:05:00 Log-Likelihood: -69.765
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.5462 66.286 2.015 0.069 -12.348 279.440
C(dose)[T.1] -101.3556 123.793 -0.819 0.430 -373.823 171.112
expression -10.2965 10.175 -1.012 0.333 -32.691 12.098
expression:C(dose)[T.1] 23.3737 19.056 1.227 0.246 -18.567 65.315
Omnibus: 3.005 Durbin-Watson: 1.153
Prob(Omnibus): 0.223 Jarque-Bera (JB): 1.660
Skew: -0.815 Prob(JB): 0.436
Kurtosis: 3.014 Cond. No. 131.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.040
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0258
Time: 19:05:00 Log-Likelihood: -70.727
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.7539 57.535 1.577 0.141 -34.605 216.113
C(dose)[T.1] 49.3245 15.632 3.155 0.008 15.266 83.383
expression -3.6325 8.782 -0.414 0.686 -22.767 15.502
Omnibus: 2.309 Durbin-Watson: 0.884
Prob(Omnibus): 0.315 Jarque-Bera (JB): 1.669
Skew: -0.779 Prob(JB): 0.434
Kurtosis: 2.507 Cond. No. 49.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:05:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.071
Method: Least Squares F-statistic: 0.07302
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.791
Time: 19:05:00 Log-Likelihood: -75.258
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.5249 74.183 1.530 0.150 -46.737 273.787
expression -3.0835 11.411 -0.270 0.791 -27.735 21.568
Omnibus: 1.359 Durbin-Watson: 1.648
Prob(Omnibus): 0.507 Jarque-Bera (JB): 0.837
Skew: 0.154 Prob(JB): 0.658
Kurtosis: 1.884 Cond. No. 48.7