AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.775 0.011 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.758
Model: OLS Adj. R-squared: 0.720
Method: Least Squares F-statistic: 19.85
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.45e-06
Time: 04:48:23 Log-Likelihood: -96.781
No. Observations: 23 AIC: 201.6
Df Residuals: 19 BIC: 206.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -13.9333 42.432 -0.328 0.746 -102.744 74.877
C(dose)[T.1] -4.7751 67.136 -0.071 0.944 -145.292 135.742
expression 15.5530 9.613 1.618 0.122 -4.567 35.673
expression:C(dose)[T.1] 14.3955 15.591 0.923 0.367 -18.237 47.028
Omnibus: 0.109 Durbin-Watson: 1.745
Prob(Omnibus): 0.947 Jarque-Bera (JB): 0.328
Skew: 0.063 Prob(JB): 0.849
Kurtosis: 2.428 Cond. No. 101.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.747
Model: OLS Adj. R-squared: 0.722
Method: Least Squares F-statistic: 29.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.06e-06
Time: 04:48:23 Log-Likelihood: -97.286
No. Observations: 23 AIC: 200.6
Df Residuals: 20 BIC: 204.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -37.9097 33.434 -1.134 0.270 -107.652 31.833
C(dose)[T.1] 56.8181 7.546 7.530 0.000 41.078 72.558
expression 21.0255 7.540 2.788 0.011 5.297 36.754
Omnibus: 0.134 Durbin-Watson: 1.815
Prob(Omnibus): 0.935 Jarque-Bera (JB): 0.344
Skew: 0.096 Prob(JB): 0.842
Kurtosis: 2.432 Cond. No. 41.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:48:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.6700
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.422
Time: 04:48:23 Log-Likelihood: -112.74
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.6735 61.550 0.482 0.635 -98.327 157.674
expression 11.6325 14.212 0.819 0.422 -17.922 41.187
Omnibus: 4.626 Durbin-Watson: 2.609
Prob(Omnibus): 0.099 Jarque-Bera (JB): 1.754
Skew: 0.259 Prob(JB): 0.416
Kurtosis: 1.750 Cond. No. 39.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.187 0.673 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.557
Model: OLS Adj. R-squared: 0.436
Method: Least Squares F-statistic: 4.610
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0253
Time: 04:48:23 Log-Likelihood: -69.194
No. Observations: 15 AIC: 146.4
Df Residuals: 11 BIC: 149.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 184.9410 78.930 2.343 0.039 11.217 358.664
C(dose)[T.1] -110.1052 101.995 -1.080 0.303 -334.595 114.384
expression -21.8795 14.559 -1.503 0.161 -53.923 10.164
expression:C(dose)[T.1] 29.8194 18.946 1.574 0.144 -11.880 71.519
Omnibus: 3.242 Durbin-Watson: 1.277
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.327
Skew: -0.682 Prob(JB): 0.515
Kurtosis: 3.514 Cond. No. 107.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 5.055
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0256
Time: 04:48:23 Log-Likelihood: -70.717
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.3691 54.241 1.666 0.122 -27.812 208.550
C(dose)[T.1] 48.7362 15.655 3.113 0.009 14.628 82.844
expression -4.2713 9.873 -0.433 0.673 -25.783 17.241
Omnibus: 2.509 Durbin-Watson: 0.847
Prob(Omnibus): 0.285 Jarque-Bera (JB): 1.839
Skew: -0.816 Prob(JB): 0.399
Kurtosis: 2.470 Cond. No. 38.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:48:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2498
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.626
Time: 04:48:23 Log-Likelihood: -75.157
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.4608 68.355 1.865 0.085 -20.211 275.133
expression -6.3601 12.724 -0.500 0.626 -33.849 21.129
Omnibus: 2.351 Durbin-Watson: 1.686
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.114
Skew: 0.244 Prob(JB): 0.573
Kurtosis: 1.757 Cond. No. 37.7