AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.202 0.658 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.688
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 13.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.85e-05
Time: 05:16:35 Log-Likelihood: -99.725
No. Observations: 23 AIC: 207.4
Df Residuals: 19 BIC: 212.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.8169 47.748 -0.310 0.760 -114.755 85.121
C(dose)[T.1] 138.5778 59.180 2.342 0.030 14.713 262.442
expression 12.7343 8.742 1.457 0.162 -5.563 31.032
expression:C(dose)[T.1] -15.6682 10.734 -1.460 0.161 -38.134 6.797
Omnibus: 0.578 Durbin-Watson: 1.625
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.626
Skew: -0.106 Prob(JB): 0.731
Kurtosis: 2.220 Cond. No. 111.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.56e-05
Time: 05:16:35 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.5198 28.898 1.437 0.166 -18.760 101.800
C(dose)[T.1] 53.0881 8.744 6.072 0.000 34.849 71.327
expression 2.3409 5.214 0.449 0.658 -8.535 13.217
Omnibus: 0.128 Durbin-Watson: 1.863
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.348
Skew: -0.046 Prob(JB): 0.840
Kurtosis: 2.404 Cond. No. 38.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:16:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.035
Method: Least Squares F-statistic: 0.2579
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.617
Time: 05:16:35 Log-Likelihood: -112.96
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.9244 47.393 1.180 0.251 -42.634 154.483
expression 4.3487 8.562 0.508 0.617 -13.458 22.155
Omnibus: 3.396 Durbin-Watson: 2.440
Prob(Omnibus): 0.183 Jarque-Bera (JB): 1.682
Skew: 0.343 Prob(JB): 0.431
Kurtosis: 1.867 Cond. No. 37.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.036 0.329 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 3.608
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0493
Time: 05:16:35 Log-Likelihood: -70.162
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.8519 87.295 1.316 0.215 -77.284 306.988
C(dose)[T.1] 86.8774 132.939 0.654 0.527 -205.720 379.475
expression -7.9152 14.443 -0.548 0.595 -39.705 23.875
expression:C(dose)[T.1] -5.8651 21.660 -0.271 0.792 -53.538 41.808
Omnibus: 2.555 Durbin-Watson: 0.990
Prob(Omnibus): 0.279 Jarque-Bera (JB): 1.784
Skew: -0.676 Prob(JB): 0.410
Kurtosis: 1.987 Cond. No. 138.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.408
Method: Least Squares F-statistic: 5.824
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0171
Time: 05:16:35 Log-Likelihood: -70.212
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.4775 62.922 2.074 0.060 -6.619 267.574
C(dose)[T.1] 51.1364 15.221 3.360 0.006 17.972 84.300
expression -10.5231 10.339 -1.018 0.329 -33.051 12.005
Omnibus: 2.495 Durbin-Watson: 1.114
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.824
Skew: -0.712 Prob(JB): 0.402
Kurtosis: 2.056 Cond. No. 52.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:16:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.060
Method: Least Squares F-statistic: 0.2022
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.660
Time: 05:16:35 Log-Likelihood: -75.184
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 131.2610 84.214 1.559 0.143 -50.672 313.194
expression -6.1733 13.729 -0.450 0.660 -35.834 23.487
Omnibus: 0.549 Durbin-Watson: 1.716
Prob(Omnibus): 0.760 Jarque-Bera (JB): 0.567
Skew: 0.095 Prob(JB): 0.753
Kurtosis: 2.067 Cond. No. 52.6