AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.098 | 0.163 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.692 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 14.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.28e-05 |
Time: | 05:03:57 | Log-Likelihood: | -99.573 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 205.0629 | 106.833 | 1.919 | 0.070 | -18.542 428.668 |
C(dose)[T.1] | -43.0300 | 127.169 | -0.338 | 0.739 | -309.198 223.138 |
expression | -25.8064 | 18.249 | -1.414 | 0.173 | -64.001 12.388 |
expression:C(dose)[T.1] | 16.4721 | 21.716 | 0.759 | 0.457 | -28.979 61.924 |
Omnibus: | 0.016 | Durbin-Watson: | 1.930 |
Prob(Omnibus): | 0.992 | Jarque-Bera (JB): | 0.203 |
Skew: | -0.038 | Prob(JB): | 0.904 |
Kurtosis: | 2.547 | Cond. No. | 259. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 21.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.05e-05 |
Time: | 05:03:57 | Log-Likelihood: | -99.916 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 20 | BIC: | 209.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 137.0663 | 57.497 | 2.384 | 0.027 | 17.129 257.003 |
C(dose)[T.1] | 53.2196 | 8.344 | 6.379 | 0.000 | 35.815 70.624 |
expression | -14.1743 | 9.786 | -1.448 | 0.163 | -34.588 6.239 |
Omnibus: | 0.132 | Durbin-Watson: | 1.872 |
Prob(Omnibus): | 0.936 | Jarque-Bera (JB): | 0.340 |
Skew: | -0.100 | Prob(JB): | 0.844 |
Kurtosis: | 2.439 | Cond. No. | 83.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:03:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.036 |
Model: | OLS | Adj. R-squared: | -0.010 |
Method: | Least Squares | F-statistic: | 0.7895 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.384 |
Time: | 05:03:57 | Log-Likelihood: | -112.68 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 166.0641 | 97.436 | 1.704 | 0.103 | -36.564 368.692 |
expression | -14.7812 | 16.635 | -0.889 | 0.384 | -49.376 19.814 |
Omnibus: | 4.190 | Durbin-Watson: | 2.442 |
Prob(Omnibus): | 0.123 | Jarque-Bera (JB): | 1.784 |
Skew: | 0.319 | Prob(JB): | 0.410 |
Kurtosis: | 1.793 | Cond. No. | 82.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.633 | 0.052 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.737 |
Model: | OLS | Adj. R-squared: | 0.666 |
Method: | Least Squares | F-statistic: | 10.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00160 |
Time: | 05:03:57 | Log-Likelihood: | -65.277 |
No. Observations: | 15 | AIC: | 138.6 |
Df Residuals: | 11 | BIC: | 141.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 355.0326 | 275.817 | 1.287 | 0.224 | -252.036 962.101 |
C(dose)[T.1] | -653.8613 | 303.065 | -2.157 | 0.054 | -1320.903 13.180 |
expression | -39.1579 | 37.536 | -1.043 | 0.319 | -121.774 43.458 |
expression:C(dose)[T.1] | 98.9553 | 41.647 | 2.376 | 0.037 | 7.291 190.620 |
Omnibus: | 1.333 | Durbin-Watson: | 0.920 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 0.733 |
Skew: | -0.532 | Prob(JB): | 0.693 |
Kurtosis: | 2.801 | Cond. No. | 591. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.602 |
Model: | OLS | Adj. R-squared: | 0.536 |
Method: | Least Squares | F-statistic: | 9.088 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00396 |
Time: | 05:03:57 | Log-Likelihood: | -68.384 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 12 | BIC: | 144.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -235.3618 | 141.006 | -1.669 | 0.121 | -542.586 71.863 |
C(dose)[T.1] | 65.5651 | 15.380 | 4.263 | 0.001 | 32.054 99.076 |
expression | 41.2255 | 19.152 | 2.153 | 0.052 | -0.503 82.954 |
Omnibus: | 3.974 | Durbin-Watson: | 0.815 |
Prob(Omnibus): | 0.137 | Jarque-Bera (JB): | 2.279 |
Skew: | -0.953 | Prob(JB): | 0.320 |
Kurtosis: | 3.102 | Cond. No. | 155. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:03:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.001147 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.974 |
Time: | 05:03:57 | Log-Likelihood: | -75.299 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.5411 | 181.191 | 0.483 | 0.637 | -303.897 478.979 |
expression | 0.8588 | 25.362 | 0.034 | 0.974 | -53.932 55.650 |
Omnibus: | 0.539 | Durbin-Watson: | 1.628 |
Prob(Omnibus): | 0.764 | Jarque-Bera (JB): | 0.556 |
Skew: | 0.038 | Prob(JB): | 0.757 |
Kurtosis: | 2.060 | Cond. No. | 130. |