AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.401 0.534 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000115
Time: 05:05:33 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 211.9295 236.265 0.897 0.381 -282.578 706.437
C(dose)[T.1] -72.7255 467.722 -0.155 0.878 -1051.679 906.228
expression -15.6776 23.477 -0.668 0.512 -64.815 33.460
expression:C(dose)[T.1] 12.4718 47.133 0.265 0.794 -86.179 111.123
Omnibus: 0.322 Durbin-Watson: 1.807
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.064 Prob(JB): 0.784
Kurtosis: 2.300 Cond. No. 1.24e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.32e-05
Time: 05:05:33 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.8005 200.073 0.904 0.377 -236.544 598.145
C(dose)[T.1] 51.0104 9.429 5.410 0.000 31.342 70.679
expression -12.5833 19.878 -0.633 0.534 -54.049 28.882
Omnibus: 0.274 Durbin-Watson: 1.873
Prob(Omnibus): 0.872 Jarque-Bera (JB): 0.455
Skew: 0.021 Prob(JB): 0.797
Kurtosis: 2.312 Cond. No. 465.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:05:33 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.152
Model: OLS Adj. R-squared: 0.112
Method: Least Squares F-statistic: 3.779
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0654
Time: 05:05:33 Log-Likelihood: -111.20
No. Observations: 23 AIC: 226.4
Df Residuals: 21 BIC: 228.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 623.2132 279.678 2.228 0.037 41.591 1204.835
expression -54.5028 28.039 -1.944 0.065 -112.813 3.807
Omnibus: 6.165 Durbin-Watson: 2.347
Prob(Omnibus): 0.046 Jarque-Bera (JB): 1.911
Skew: 0.221 Prob(JB): 0.385
Kurtosis: 1.659 Cond. No. 424.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.666 0.221 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.624
Model: OLS Adj. R-squared: 0.522
Method: Least Squares F-statistic: 6.096
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0107
Time: 05:05:33 Log-Likelihood: -67.955
No. Observations: 15 AIC: 143.9
Df Residuals: 11 BIC: 146.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 396.7288 617.751 0.642 0.534 -962.933 1756.391
C(dose)[T.1] -1355.7244 787.222 -1.722 0.113 -3088.389 376.940
expression -31.2727 58.659 -0.533 0.605 -160.379 97.834
expression:C(dose)[T.1] 133.0325 74.640 1.782 0.102 -31.249 297.314
Omnibus: 1.122 Durbin-Watson: 1.269
Prob(Omnibus): 0.571 Jarque-Bera (JB): 0.741
Skew: 0.010 Prob(JB): 0.690
Kurtosis: 1.911 Cond. No. 1.73e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.435
Method: Least Squares F-statistic: 6.396
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0129
Time: 05:05:33 Log-Likelihood: -69.858
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -468.4465 415.288 -1.128 0.281 -1373.281 436.388
C(dose)[T.1] 47.1488 14.834 3.178 0.008 14.828 79.469
expression 50.8905 39.425 1.291 0.221 -35.010 136.791
Omnibus: 0.873 Durbin-Watson: 0.925
Prob(Omnibus): 0.646 Jarque-Bera (JB): 0.757
Skew: -0.465 Prob(JB): 0.685
Kurtosis: 2.411 Cond. No. 602.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:05:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.108
Model: OLS Adj. R-squared: 0.040
Method: Least Squares F-statistic: 1.582
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.231
Time: 05:05:33 Log-Likelihood: -74.439
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -584.6946 539.394 -1.084 0.298 -1749.984 580.595
expression 64.2910 51.112 1.258 0.231 -46.131 174.713
Omnibus: 0.484 Durbin-Watson: 1.667
Prob(Omnibus): 0.785 Jarque-Bera (JB): 0.109
Skew: -0.201 Prob(JB): 0.947
Kurtosis: 2.888 Cond. No. 599.