AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.401 | 0.534 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.14 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000115 |
Time: | 05:05:33 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 211.9295 | 236.265 | 0.897 | 0.381 | -282.578 706.437 |
C(dose)[T.1] | -72.7255 | 467.722 | -0.155 | 0.878 | -1051.679 906.228 |
expression | -15.6776 | 23.477 | -0.668 | 0.512 | -64.815 33.460 |
expression:C(dose)[T.1] | 12.4718 | 47.133 | 0.265 | 0.794 | -86.179 111.123 |
Omnibus: | 0.322 | Durbin-Watson: | 1.807 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.064 | Prob(JB): | 0.784 |
Kurtosis: | 2.300 | Cond. No. | 1.24e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.07 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.32e-05 |
Time: | 05:05:33 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 180.8005 | 200.073 | 0.904 | 0.377 | -236.544 598.145 |
C(dose)[T.1] | 51.0104 | 9.429 | 5.410 | 0.000 | 31.342 70.679 |
expression | -12.5833 | 19.878 | -0.633 | 0.534 | -54.049 28.882 |
Omnibus: | 0.274 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.872 | Jarque-Bera (JB): | 0.455 |
Skew: | 0.021 | Prob(JB): | 0.797 |
Kurtosis: | 2.312 | Cond. No. | 465. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:05:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.152 |
Model: | OLS | Adj. R-squared: | 0.112 |
Method: | Least Squares | F-statistic: | 3.779 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0654 |
Time: | 05:05:33 | Log-Likelihood: | -111.20 |
No. Observations: | 23 | AIC: | 226.4 |
Df Residuals: | 21 | BIC: | 228.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 623.2132 | 279.678 | 2.228 | 0.037 | 41.591 1204.835 |
expression | -54.5028 | 28.039 | -1.944 | 0.065 | -112.813 3.807 |
Omnibus: | 6.165 | Durbin-Watson: | 2.347 |
Prob(Omnibus): | 0.046 | Jarque-Bera (JB): | 1.911 |
Skew: | 0.221 | Prob(JB): | 0.385 |
Kurtosis: | 1.659 | Cond. No. | 424. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.666 | 0.221 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.624 |
Model: | OLS | Adj. R-squared: | 0.522 |
Method: | Least Squares | F-statistic: | 6.096 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0107 |
Time: | 05:05:33 | Log-Likelihood: | -67.955 |
No. Observations: | 15 | AIC: | 143.9 |
Df Residuals: | 11 | BIC: | 146.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 396.7288 | 617.751 | 0.642 | 0.534 | -962.933 1756.391 |
C(dose)[T.1] | -1355.7244 | 787.222 | -1.722 | 0.113 | -3088.389 376.940 |
expression | -31.2727 | 58.659 | -0.533 | 0.605 | -160.379 97.834 |
expression:C(dose)[T.1] | 133.0325 | 74.640 | 1.782 | 0.102 | -31.249 297.314 |
Omnibus: | 1.122 | Durbin-Watson: | 1.269 |
Prob(Omnibus): | 0.571 | Jarque-Bera (JB): | 0.741 |
Skew: | 0.010 | Prob(JB): | 0.690 |
Kurtosis: | 1.911 | Cond. No. | 1.73e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.516 |
Model: | OLS | Adj. R-squared: | 0.435 |
Method: | Least Squares | F-statistic: | 6.396 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0129 |
Time: | 05:05:33 | Log-Likelihood: | -69.858 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -468.4465 | 415.288 | -1.128 | 0.281 | -1373.281 436.388 |
C(dose)[T.1] | 47.1488 | 14.834 | 3.178 | 0.008 | 14.828 79.469 |
expression | 50.8905 | 39.425 | 1.291 | 0.221 | -35.010 136.791 |
Omnibus: | 0.873 | Durbin-Watson: | 0.925 |
Prob(Omnibus): | 0.646 | Jarque-Bera (JB): | 0.757 |
Skew: | -0.465 | Prob(JB): | 0.685 |
Kurtosis: | 2.411 | Cond. No. | 602. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:05:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.108 |
Model: | OLS | Adj. R-squared: | 0.040 |
Method: | Least Squares | F-statistic: | 1.582 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.231 |
Time: | 05:05:33 | Log-Likelihood: | -74.439 |
No. Observations: | 15 | AIC: | 152.9 |
Df Residuals: | 13 | BIC: | 154.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -584.6946 | 539.394 | -1.084 | 0.298 | -1749.984 580.595 |
expression | 64.2910 | 51.112 | 1.258 | 0.231 | -46.131 174.713 |
Omnibus: | 0.484 | Durbin-Watson: | 1.667 |
Prob(Omnibus): | 0.785 | Jarque-Bera (JB): | 0.109 |
Skew: | -0.201 | Prob(JB): | 0.947 |
Kurtosis: | 2.888 | Cond. No. | 599. |