AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.149 0.703 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 12.83
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.17e-05
Time: 22:49:23 Log-Likelihood: -100.37
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.2548 89.117 0.182 0.857 -170.270 202.780
C(dose)[T.1] 182.3377 127.685 1.428 0.170 -84.909 449.585
expression 5.4299 12.720 0.427 0.674 -21.194 32.054
expression:C(dose)[T.1] -18.5653 18.304 -1.014 0.323 -56.875 19.744
Omnibus: 0.178 Durbin-Watson: 1.825
Prob(Omnibus): 0.915 Jarque-Bera (JB): 0.089
Skew: -0.118 Prob(JB): 0.956
Kurtosis: 2.807 Cond. No. 268.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.71
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.63e-05
Time: 22:49:23 Log-Likelihood: -100.98
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.9308 64.262 1.228 0.234 -55.117 212.979
C(dose)[T.1] 53.1309 8.754 6.070 0.000 34.871 71.391
expression -3.5370 9.153 -0.386 0.703 -22.630 15.556
Omnibus: 0.063 Durbin-Watson: 1.920
Prob(Omnibus): 0.969 Jarque-Bera (JB): 0.284
Skew: 0.031 Prob(JB): 0.868
Kurtosis: 2.459 Cond. No. 105.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:49:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.2122
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.650
Time: 22:49:24 Log-Likelihood: -112.99
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.9194 104.886 1.220 0.236 -90.204 346.043
expression -6.9238 15.031 -0.461 0.650 -38.182 24.334
Omnibus: 3.394 Durbin-Watson: 2.545
Prob(Omnibus): 0.183 Jarque-Bera (JB): 1.479
Skew: 0.212 Prob(JB): 0.477
Kurtosis: 1.832 Cond. No. 104.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.983 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 4.356
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0298
Time: 22:49:24 Log-Likelihood: -69.428
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -166.5217 175.456 -0.949 0.363 -552.697 219.653
C(dose)[T.1] 348.6814 199.531 1.748 0.108 -90.483 787.845
expression 37.6114 28.153 1.336 0.209 -24.352 99.575
expression:C(dose)[T.1] -47.3810 31.478 -1.505 0.160 -116.664 21.902
Omnibus: 1.416 Durbin-Watson: 1.092
Prob(Omnibus): 0.493 Jarque-Bera (JB): 1.143
Skew: -0.592 Prob(JB): 0.565
Kurtosis: 2.347 Cond. No. 272.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0280
Time: 22:49:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.2147 83.165 0.832 0.422 -111.987 250.417
C(dose)[T.1] 49.3365 17.013 2.900 0.013 12.268 86.405
expression -0.2871 13.242 -0.022 0.983 -29.139 28.564
Omnibus: 2.690 Durbin-Watson: 0.804
Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.867
Skew: -0.841 Prob(JB): 0.393
Kurtosis: 2.602 Cond. No. 71.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:49:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.063
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.8670
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.369
Time: 22:49:24 Log-Likelihood: -74.816
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.0464 99.955 0.010 0.992 -214.893 216.986
expression 14.2924 15.349 0.931 0.369 -18.868 47.453
Omnibus: 0.313 Durbin-Watson: 1.597
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.452
Skew: 0.238 Prob(JB): 0.798
Kurtosis: 2.295 Cond. No. 67.7