AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.985 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.43e-05
Time: 06:25:22 Log-Likelihood: -100.25
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 157.9403 162.847 0.970 0.344 -182.903 498.784
C(dose)[T.1] -277.0833 281.182 -0.985 0.337 -865.604 311.437
expression -14.3664 22.538 -0.637 0.531 -61.539 32.807
expression:C(dose)[T.1] 47.7743 40.600 1.177 0.254 -37.201 132.750
Omnibus: 4.113 Durbin-Watson: 2.001
Prob(Omnibus): 0.128 Jarque-Bera (JB): 1.593
Skew: 0.201 Prob(JB): 0.451
Kurtosis: 1.775 Cond. No. 554.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 06:25:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.6345 136.788 0.377 0.710 -233.700 336.969
C(dose)[T.1] 53.4922 12.029 4.447 0.000 28.401 78.583
expression 0.3565 18.926 0.019 0.985 -39.122 39.835
Omnibus: 0.339 Durbin-Watson: 1.883
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.495
Skew: 0.062 Prob(JB): 0.781
Kurtosis: 2.292 Cond. No. 224.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:25:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.302
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 9.088
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00660
Time: 06:25:22 Log-Likelihood: -108.97
No. Observations: 23 AIC: 221.9
Df Residuals: 21 BIC: 224.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 481.1683 133.305 3.610 0.002 203.944 758.392
expression -57.2485 18.990 -3.015 0.007 -96.741 -17.756
Omnibus: 0.333 Durbin-Watson: 2.731
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.497
Skew: 0.147 Prob(JB): 0.780
Kurtosis: 2.342 Cond. No. 158.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.050 0.326 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 3.671
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0472
Time: 06:25:22 Log-Likelihood: -70.097
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -199.4089 268.423 -0.743 0.473 -790.203 391.386
C(dose)[T.1] 201.9158 403.515 0.500 0.627 -686.215 1090.046
expression 37.3763 37.564 0.995 0.341 -45.302 120.055
expression:C(dose)[T.1] -21.9603 55.367 -0.397 0.699 -143.822 99.902
Omnibus: 3.122 Durbin-Watson: 0.626
Prob(Omnibus): 0.210 Jarque-Bera (JB): 1.939
Skew: -0.877 Prob(JB): 0.379
Kurtosis: 2.842 Cond. No. 501.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.837
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0170
Time: 06:25:22 Log-Likelihood: -70.204
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -127.2422 190.291 -0.669 0.516 -541.850 287.365
C(dose)[T.1] 42.0153 16.641 2.525 0.027 5.758 78.272
expression 27.2678 26.610 1.025 0.326 -30.709 85.245
Omnibus: 3.454 Durbin-Watson: 0.644
Prob(Omnibus): 0.178 Jarque-Bera (JB): 2.017
Skew: -0.898 Prob(JB): 0.365
Kurtosis: 2.989 Cond. No. 188.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:25:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.224
Model: OLS Adj. R-squared: 0.164
Method: Least Squares F-statistic: 3.749
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0749
Time: 06:25:22 Log-Likelihood: -73.399
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -310.8008 209.072 -1.487 0.161 -762.474 140.873
expression 55.5613 28.694 1.936 0.075 -6.428 117.550
Omnibus: 0.651 Durbin-Watson: 1.447
Prob(Omnibus): 0.722 Jarque-Bera (JB): 0.616
Skew: 0.143 Prob(JB): 0.735
Kurtosis: 2.049 Cond. No. 173.