AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.121 | 0.732 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000133 |
Time: | 04:31:49 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.3104 | 226.221 | 0.059 | 0.954 | -460.176 486.796 |
C(dose)[T.1] | -24.4528 | 411.545 | -0.059 | 0.953 | -885.826 836.920 |
expression | 4.2835 | 23.684 | 0.181 | 0.858 | -45.289 53.856 |
expression:C(dose)[T.1] | 8.3852 | 43.670 | 0.192 | 0.850 | -83.017 99.788 |
Omnibus: | 0.553 | Durbin-Watson: | 1.840 |
Prob(Omnibus): | 0.758 | Jarque-Bera (JB): | 0.602 |
Skew: | 0.036 | Prob(JB): | 0.740 |
Kurtosis: | 2.211 | Cond. No. | 1.05e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.67e-05 |
Time: | 04:31:49 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -10.2388 | 185.456 | -0.055 | 0.957 | -397.094 376.616 |
C(dose)[T.1] | 54.5468 | 9.410 | 5.797 | 0.000 | 34.917 74.176 |
expression | 6.7499 | 19.414 | 0.348 | 0.732 | -33.746 47.246 |
Omnibus: | 0.569 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.752 | Jarque-Bera (JB): | 0.608 |
Skew: | 0.005 | Prob(JB): | 0.738 |
Kurtosis: | 2.204 | Cond. No. | 407. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.065 |
Model: | OLS | Adj. R-squared: | 0.021 |
Method: | Least Squares | F-statistic: | 1.463 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.240 |
Time: | 04:31:49 | Log-Likelihood: | -112.33 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 230.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 409.5318 | 272.765 | 1.501 | 0.148 | -157.713 976.777 |
expression | -34.8562 | 28.817 | -1.210 | 0.240 | -94.785 25.073 |
Omnibus: | 2.992 | Durbin-Watson: | 2.520 |
Prob(Omnibus): | 0.224 | Jarque-Bera (JB): | 1.514 |
Skew: | 0.295 | Prob(JB): | 0.469 |
Kurtosis: | 1.890 | Cond. No. | 374. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.304 | 0.155 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.538 |
Model: | OLS | Adj. R-squared: | 0.412 |
Method: | Least Squares | F-statistic: | 4.263 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0316 |
Time: | 04:31:49 | Log-Likelihood: | -69.515 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -678.4337 | 664.567 | -1.021 | 0.329 | -2141.135 784.267 |
C(dose)[T.1] | 83.2404 | 1017.405 | 0.082 | 0.936 | -2156.053 2322.534 |
expression | 75.7756 | 67.507 | 1.122 | 0.286 | -72.807 224.358 |
expression:C(dose)[T.1] | -4.4885 | 102.510 | -0.044 | 0.966 | -230.112 221.135 |
Omnibus: | 2.579 | Durbin-Watson: | 1.137 |
Prob(Omnibus): | 0.275 | Jarque-Bera (JB): | 1.385 |
Skew: | -0.438 | Prob(JB): | 0.500 |
Kurtosis: | 1.797 | Cond. No. | 1.75e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.538 |
Model: | OLS | Adj. R-squared: | 0.460 |
Method: | Least Squares | F-statistic: | 6.974 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00978 |
Time: | 04:31:49 | Log-Likelihood: | -69.516 |
No. Observations: | 15 | AIC: | 145.0 |
Df Residuals: | 12 | BIC: | 147.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -659.2735 | 478.917 | -1.377 | 0.194 | -1702.744 384.197 |
C(dose)[T.1] | 38.6980 | 15.990 | 2.420 | 0.032 | 3.858 73.538 |
expression | 73.8291 | 48.644 | 1.518 | 0.155 | -32.156 179.814 |
Omnibus: | 2.618 | Durbin-Watson: | 1.134 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.376 |
Skew: | -0.427 | Prob(JB): | 0.503 |
Kurtosis: | 1.786 | Cond. No. | 668. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.312 |
Model: | OLS | Adj. R-squared: | 0.259 |
Method: | Least Squares | F-statistic: | 5.891 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0305 |
Time: | 04:31:49 | Log-Likelihood: | -72.497 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 13 | BIC: | 150.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1143.7561 | 509.906 | -2.243 | 0.043 | -2245.342 -42.170 |
expression | 124.7543 | 51.401 | 2.427 | 0.030 | 13.710 235.799 |
Omnibus: | 1.012 | Durbin-Watson: | 1.937 |
Prob(Omnibus): | 0.603 | Jarque-Bera (JB): | 0.887 |
Skew: | 0.409 | Prob(JB): | 0.642 |
Kurtosis: | 2.134 | Cond. No. | 606. |