AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.362 | 0.257 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 14.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.34e-05 |
Time: | 03:43:23 | Log-Likelihood: | -99.265 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.8790 | 159.463 | 0.545 | 0.592 | -246.880 420.638 |
C(dose)[T.1] | 427.2751 | 278.495 | 1.534 | 0.141 | -155.622 1010.172 |
expression | -3.7665 | 18.372 | -0.205 | 0.840 | -42.219 34.686 |
expression:C(dose)[T.1] | -42.9369 | 32.013 | -1.341 | 0.196 | -109.940 24.066 |
Omnibus: | 0.020 | Durbin-Watson: | 1.778 |
Prob(Omnibus): | 0.990 | Jarque-Bera (JB): | 0.129 |
Skew: | 0.050 | Prob(JB): | 0.938 |
Kurtosis: | 2.647 | Cond. No. | 712. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.639 |
Method: | Least Squares | F-statistic: | 20.44 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.47e-05 |
Time: | 03:43:23 | Log-Likelihood: | -100.30 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 20 | BIC: | 210.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 209.5418 | 133.214 | 1.573 | 0.131 | -68.339 487.422 |
C(dose)[T.1] | 53.9118 | 8.500 | 6.343 | 0.000 | 36.181 71.642 |
expression | -17.9077 | 15.343 | -1.167 | 0.257 | -49.912 14.097 |
Omnibus: | 0.862 | Durbin-Watson: | 1.783 |
Prob(Omnibus): | 0.650 | Jarque-Bera (JB): | 0.318 |
Skew: | 0.287 | Prob(JB): | 0.853 |
Kurtosis: | 3.056 | Cond. No. | 277. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:43:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.2238 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.641 |
Time: | 03:43:23 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.3453 | 225.518 | 0.826 | 0.418 | -282.645 655.336 |
expression | -12.2710 | 25.940 | -0.473 | 0.641 | -66.216 41.674 |
Omnibus: | 4.395 | Durbin-Watson: | 2.488 |
Prob(Omnibus): | 0.111 | Jarque-Bera (JB): | 1.714 |
Skew: | 0.257 | Prob(JB): | 0.424 |
Kurtosis: | 1.765 | Cond. No. | 277. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.036 | 0.852 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.313 |
Method: | Least Squares | F-statistic: | 3.125 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0700 |
Time: | 03:43:23 | Log-Likelihood: | -70.677 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -65.0162 | 288.055 | -0.226 | 0.826 | -699.020 568.988 |
C(dose)[T.1] | 215.7989 | 379.288 | 0.569 | 0.581 | -619.009 1050.607 |
expression | 15.6350 | 33.976 | 0.460 | 0.654 | -59.145 90.415 |
expression:C(dose)[T.1] | -19.4880 | 43.903 | -0.444 | 0.666 | -116.117 77.141 |
Omnibus: | 3.055 | Durbin-Watson: | 0.834 |
Prob(Omnibus): | 0.217 | Jarque-Bera (JB): | 2.008 |
Skew: | -0.886 | Prob(JB): | 0.366 |
Kurtosis: | 2.732 | Cond. No. | 572. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.918 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0275 |
Time: | 03:43:23 | Log-Likelihood: | -70.810 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.8515 | 176.448 | 0.192 | 0.851 | -350.595 418.298 |
C(dose)[T.1] | 47.6341 | 17.723 | 2.688 | 0.020 | 9.019 86.249 |
expression | 3.9637 | 20.785 | 0.191 | 0.852 | -41.324 49.251 |
Omnibus: | 2.701 | Durbin-Watson: | 0.775 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.904 |
Skew: | -0.846 | Prob(JB): | 0.386 |
Kurtosis: | 2.569 | Cond. No. | 199. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:43:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.120 |
Model: | OLS | Adj. R-squared: | 0.052 |
Method: | Least Squares | F-statistic: | 1.766 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.207 |
Time: | 03:43:23 | Log-Likelihood: | -74.345 |
No. Observations: | 15 | AIC: | 152.7 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -164.9294 | 194.808 | -0.847 | 0.413 | -585.786 255.927 |
expression | 29.7878 | 22.413 | 1.329 | 0.207 | -18.633 78.208 |
Omnibus: | 0.332 | Durbin-Watson: | 1.357 |
Prob(Omnibus): | 0.847 | Jarque-Bera (JB): | 0.466 |
Skew: | 0.244 | Prob(JB): | 0.792 |
Kurtosis: | 2.288 | Cond. No. | 180. |