AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.724  |   0.405  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.723 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.680 | 
  | Method: |              Least Squares |     F-statistic:        |     16.55 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.57e-05 | 
  | Time: |                  06:17:49 |        Log-Likelihood:     |   -98.330 | 
  | No. Observations: |           23 |         AIC:                |     204.7 | 
  | Df Residuals: |               19 |         BIC:                |     209.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  -33.2065 |     87.472 |     -0.380 |   0.708 |   -216.287   149.874 | 
  | C(dose)[T.1] |               280.3230 |    111.547 |      2.513 |   0.021 |     46.853   513.793 | 
  | expression |                  18.0122 |     17.988 |      1.001 |   0.329 |    -19.637    55.661 | 
  | expression:C(dose)[T.1] |    -48.2220 |     23.377 |     -2.063 |   0.053 |    -97.150     0.706 | 
  | Omnibus: |         1.557 |    Durbin-Watson:      |     1.708 | 
  | Prob(Omnibus): |   0.459 |    Jarque-Bera (JB):   |     1.226 | 
  | Skew: |            0.365 |    Prob(JB):           |     0.542 | 
  | Kurtosis: |        2.135 |    Cond. No.           |      187. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.661 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.627 | 
  | Method: |              Least Squares |     F-statistic:        |     19.53 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.99e-05 | 
  | Time: |                  06:17:49 |        Log-Likelihood:     |   -100.65 | 
  | No. Observations: |           23 |         AIC:                |     207.3 | 
  | Df Residuals: |               20 |         BIC:                |     210.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       105.3583 |     60.415 |      1.744 |   0.097 |    -20.666   231.382 | 
  | C(dose)[T.1] |     50.8812 |      9.086 |      5.600 |   0.000 |     31.928    69.834 | 
  | expression |      -10.5397 |     12.388 |     -0.851 |   0.405 |    -36.381    15.302 | 
  | Omnibus: |         2.151 |    Durbin-Watson:      |     1.858 | 
  | Prob(Omnibus): |   0.341 |    Jarque-Bera (JB):   |     1.175 | 
  | Skew: |            0.174 |    Prob(JB):           |     0.556 | 
  | Kurtosis: |        1.949 |    Cond. No.           |      70.1 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  06:17:49 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.130 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.089 | 
  | Method: |              Least Squares |     F-statistic:        |     3.146 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0906 |  
  | Time: |                  06:17:49 |        Log-Likelihood:     |   -111.50 | 
  | No. Observations: |           23 |         AIC:                |     227.0 | 
  | Df Residuals: |               21 |         BIC:                |     229.3 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     234.1984 |     87.362 |      2.681 |   0.014 |     52.520   415.877 | 
  | expression |    -32.5797 |     18.370 |     -1.774 |   0.091 |    -70.781     5.622 | 
  | Omnibus: |         1.277 |    Durbin-Watson:      |     2.324 | 
  | Prob(Omnibus): |   0.528 |    Jarque-Bera (JB):   |     0.867 | 
  | Skew: |           -0.005 |    Prob(JB):           |     0.648 | 
  | Kurtosis: |        2.049 |    Cond. No.           |      64.4 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  1.136  |   0.308  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.527 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.398 | 
  | Method: |              Least Squares |     F-statistic:        |     4.082 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0356 |  
  | Time: |                  06:17:49 |        Log-Likelihood:     |   -69.689 | 
  | No. Observations: |           15 |         AIC:                |     147.4 | 
  | Df Residuals: |               11 |         BIC:                |     150.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  102.2711 |    143.249 |      0.714 |   0.490 |   -213.019   417.561 | 
  | C(dose)[T.1] |               226.1313 |    214.956 |      1.052 |   0.315 |   -246.983   699.246 | 
  | expression |                  -6.6158 |     27.118 |     -0.244 |   0.812 |    -66.301    53.070 | 
  | expression:C(dose)[T.1] |    -34.7259 |     41.353 |     -0.840 |   0.419 |   -125.743    56.292 | 
  | Omnibus: |         0.106 |    Durbin-Watson:      |     1.239 | 
  | Prob(Omnibus): |   0.948 |    Jarque-Bera (JB):   |     0.057 | 
  | Skew: |           -0.012 |    Prob(JB):           |     0.972 | 
  | Kurtosis: |        2.698 |    Cond. No.           |      197. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.496 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.413 | 
  | Method: |              Least Squares |     F-statistic:        |     5.915 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0163 |  
  | Time: |                  06:17:50 |        Log-Likelihood:     |   -70.155 | 
  | No. Observations: |           15 |         AIC:                |     146.3 | 
  | Df Residuals: |               12 |         BIC:                |     148.4 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       180.9160 |    107.055 |      1.690 |   0.117 |    -52.336   414.168 | 
  | C(dose)[T.1] |     46.0946 |     15.323 |      3.008 |   0.011 |     12.709    79.480 | 
  | expression |      -21.5487 |     20.220 |     -1.066 |   0.308 |    -65.604    22.507 | 
  | Omnibus: |         0.580 |    Durbin-Watson:      |     1.119 | 
  | Prob(Omnibus): |   0.748 |    Jarque-Bera (JB):   |     0.590 | 
  | Skew: |           -0.371 |    Prob(JB):           |     0.745 | 
  | Kurtosis: |        2.373 |    Cond. No.           |      77.3 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  06:17:50 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.117 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.049 | 
  | Method: |              Least Squares |     F-statistic:        |     1.717 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.213 |  
  | Time: |                  06:17:50 |        Log-Likelihood:     |   -74.370 | 
  | No. Observations: |           15 |         AIC:                |     152.7 | 
  | Df Residuals: |               13 |         BIC:                |     154.2 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     265.4627 |    131.446 |      2.020 |   0.065 |    -18.509   549.435 | 
  | expression |    -33.1028 |     25.261 |     -1.310 |   0.213 |    -87.676    21.470 | 
  | Omnibus: |         0.184 |    Durbin-Watson:      |     1.540 | 
  | Prob(Omnibus): |   0.912 |    Jarque-Bera (JB):   |     0.305 | 
  | Skew: |            0.211 |    Prob(JB):           |     0.859 | 
  | Kurtosis: |        2.444 |    Cond. No.           |      74.3 |