AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.729 0.403 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.42
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.99e-05
Time: 04:42:14 Log-Likelihood: -100.62
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.9783 53.807 1.802 0.087 -15.641 209.598
C(dose)[T.1] 33.9225 90.104 0.376 0.711 -154.668 222.513
expression -7.6898 9.612 -0.800 0.434 -27.808 12.428
expression:C(dose)[T.1] 3.5838 15.893 0.225 0.824 -29.681 36.848
Omnibus: 0.144 Durbin-Watson: 1.835
Prob(Omnibus): 0.931 Jarque-Bera (JB): 0.362
Skew: 0.051 Prob(JB): 0.835
Kurtosis: 2.394 Cond. No. 146.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.98e-05
Time: 04:42:14 Log-Likelihood: -100.65
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.6878 41.977 2.137 0.045 2.125 177.250
C(dose)[T.1] 54.1415 8.666 6.248 0.000 36.065 72.218
expression -6.3790 7.471 -0.854 0.403 -21.963 9.205
Omnibus: 0.122 Durbin-Watson: 1.835
Prob(Omnibus): 0.941 Jarque-Bera (JB): 0.343
Skew: 0.040 Prob(JB): 0.842
Kurtosis: 2.407 Cond. No. 57.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01098
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.918
Time: 04:42:14 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 87.0521 70.378 1.237 0.230 -59.307 233.412
expression -1.3046 12.452 -0.105 0.918 -27.200 24.591
Omnibus: 3.435 Durbin-Watson: 2.494
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.606
Skew: 0.296 Prob(JB): 0.448
Kurtosis: 1.849 Cond. No. 56.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.309 0.589 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.317
Method: Least Squares F-statistic: 3.167
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0678
Time: 04:42:14 Log-Likelihood: -70.631
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.5622 115.129 0.118 0.908 -239.836 266.960
C(dose)[T.1] 68.6074 168.589 0.407 0.692 -302.455 439.670
expression 9.3823 19.947 0.470 0.647 -34.520 53.284
expression:C(dose)[T.1] -3.6929 28.427 -0.130 0.899 -66.259 58.874
Omnibus: 2.624 Durbin-Watson: 0.726
Prob(Omnibus): 0.269 Jarque-Bera (JB): 1.820
Skew: -0.829 Prob(JB): 0.403
Kurtosis: 2.600 Cond. No. 168.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.165
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0241
Time: 04:42:14 Log-Likelihood: -70.643
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.0014 78.999 0.304 0.766 -148.122 196.125
C(dose)[T.1] 46.8151 16.122 2.904 0.013 11.689 81.941
expression 7.5640 13.617 0.555 0.589 -22.105 37.233
Omnibus: 2.658 Durbin-Watson: 0.724
Prob(Omnibus): 0.265 Jarque-Bera (JB): 1.832
Skew: -0.834 Prob(JB): 0.400
Kurtosis: 2.614 Cond. No. 62.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.085
Model: OLS Adj. R-squared: 0.015
Method: Least Squares F-statistic: 1.207
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.292
Time: 04:42:14 Log-Likelihood: -74.634
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -13.1642 97.731 -0.135 0.895 -224.300 197.971
expression 18.0788 16.457 1.099 0.292 -17.474 53.632
Omnibus: 0.831 Durbin-Watson: 1.452
Prob(Omnibus): 0.660 Jarque-Bera (JB): 0.676
Skew: 0.131 Prob(JB): 0.713
Kurtosis: 1.993 Cond. No. 61.4