AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.139 | 0.713 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.600 |
Method: | Least Squares | F-statistic: | 11.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000124 |
Time: | 03:36:27 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.4059 | 159.099 | 0.386 | 0.704 | -271.592 394.403 |
C(dose)[T.1] | 149.8329 | 251.907 | 0.595 | 0.559 | -377.415 677.081 |
expression | -0.9918 | 21.906 | -0.045 | 0.964 | -46.843 44.859 |
expression:C(dose)[T.1] | -13.7536 | 35.361 | -0.389 | 0.702 | -87.765 60.258 |
Omnibus: | 0.363 | Durbin-Watson: | 1.845 |
Prob(Omnibus): | 0.834 | Jarque-Bera (JB): | 0.507 |
Skew: | 0.031 | Prob(JB): | 0.776 |
Kurtosis: | 2.276 | Cond. No. | 508. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.69 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.64e-05 |
Time: | 03:36:27 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 99.7132 | 122.269 | 0.816 | 0.424 | -155.336 354.762 |
C(dose)[T.1] | 51.9270 | 9.524 | 5.452 | 0.000 | 32.061 71.793 |
expression | -6.2703 | 16.827 | -0.373 | 0.713 | -41.372 28.831 |
Omnibus: | 0.294 | Durbin-Watson: | 1.848 |
Prob(Omnibus): | 0.863 | Jarque-Bera (JB): | 0.468 |
Skew: | 0.057 | Prob(JB): | 0.791 |
Kurtosis: | 2.310 | Cond. No. | 205. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:36:27 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.133 |
Model: | OLS | Adj. R-squared: | 0.092 |
Method: | Least Squares | F-statistic: | 3.233 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0866 |
Time: | 03:36:27 | Log-Likelihood: | -111.46 |
No. Observations: | 23 | AIC: | 226.9 |
Df Residuals: | 21 | BIC: | 229.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 385.1976 | 170.029 | 2.265 | 0.034 | 31.603 738.792 |
expression | -42.7268 | 23.763 | -1.798 | 0.087 | -92.145 6.691 |
Omnibus: | 0.775 | Durbin-Watson: | 2.309 |
Prob(Omnibus): | 0.679 | Jarque-Bera (JB): | 0.713 |
Skew: | 0.110 | Prob(JB): | 0.700 |
Kurtosis: | 2.166 | Cond. No. | 185. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.886 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.614 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 5.830 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0123 |
Time: | 03:36:27 | Log-Likelihood: | -68.163 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 232.7122 | 128.111 | 1.816 | 0.097 | -49.258 514.682 |
C(dose)[T.1] | -381.9259 | 199.578 | -1.914 | 0.082 | -821.195 57.343 |
expression | -23.8861 | 18.457 | -1.294 | 0.222 | -64.510 16.737 |
expression:C(dose)[T.1] | 60.7366 | 28.089 | 2.162 | 0.053 | -1.086 122.559 |
Omnibus: | 0.935 | Durbin-Watson: | 1.132 |
Prob(Omnibus): | 0.627 | Jarque-Bera (JB): | 0.745 |
Skew: | -0.216 | Prob(JB): | 0.689 |
Kurtosis: | 1.998 | Cond. No. | 271. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.904 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0278 |
Time: | 03:36:27 | Log-Likelihood: | -70.819 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.2463 | 110.632 | 0.463 | 0.651 | -189.799 292.292 |
C(dose)[T.1] | 48.5082 | 16.407 | 2.957 | 0.012 | 12.760 84.256 |
expression | 2.3386 | 15.902 | 0.147 | 0.886 | -32.308 36.985 |
Omnibus: | 2.393 | Durbin-Watson: | 0.793 |
Prob(Omnibus): | 0.302 | Jarque-Bera (JB): | 1.746 |
Skew: | -0.795 | Prob(JB): | 0.418 |
Kurtosis: | 2.484 | Cond. No. | 102. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:36:27 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.049 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.6692 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.428 |
Time: | 03:36:27 | Log-Likelihood: | -74.924 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.7813 | 136.594 | -0.130 | 0.898 | -312.874 277.312 |
expression | 15.7487 | 19.251 | 0.818 | 0.428 | -25.841 57.338 |
Omnibus: | 0.210 | Durbin-Watson: | 1.383 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.375 |
Skew: | -0.201 | Prob(JB): | 0.829 |
Kurtosis: | 2.337 | Cond. No. | 99.7 |