AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.767 | 0.391 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.704 |
Model: | OLS | Adj. R-squared: | 0.657 |
Method: | Least Squares | F-statistic: | 15.04 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.96e-05 |
Time: | 04:59:52 | Log-Likelihood: | -99.115 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 19 | BIC: | 210.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.5978 | 127.485 | 0.938 | 0.360 | -147.232 386.427 |
C(dose)[T.1] | -242.1348 | 180.582 | -1.341 | 0.196 | -620.098 135.828 |
expression | -11.0360 | 21.494 | -0.513 | 0.614 | -56.024 33.952 |
expression:C(dose)[T.1] | 49.6717 | 30.368 | 1.636 | 0.118 | -13.890 113.234 |
Omnibus: | 1.176 | Durbin-Watson: | 1.993 |
Prob(Omnibus): | 0.555 | Jarque-Bera (JB): | 1.100 |
Skew: | 0.440 | Prob(JB): | 0.577 |
Kurtosis: | 2.389 | Cond. No. | 347. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.94e-05 |
Time: | 04:59:52 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -27.8406 | 93.850 | -0.297 | 0.770 | -223.608 167.926 |
C(dose)[T.1] | 52.9211 | 8.619 | 6.140 | 0.000 | 34.941 70.901 |
expression | 13.8476 | 15.807 | 0.876 | 0.391 | -19.126 46.821 |
Omnibus: | 1.569 | Durbin-Watson: | 2.049 |
Prob(Omnibus): | 0.456 | Jarque-Bera (JB): | 1.179 |
Skew: | 0.326 | Prob(JB): | 0.555 |
Kurtosis: | 2.102 | Cond. No. | 134. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:59:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.025 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.5383 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.471 |
Time: | 04:59:52 | Log-Likelihood: | -112.81 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.2905 | 155.551 | -0.220 | 0.828 | -357.776 289.195 |
expression | 19.1949 | 26.162 | 0.734 | 0.471 | -35.211 73.601 |
Omnibus: | 2.914 | Durbin-Watson: | 2.698 |
Prob(Omnibus): | 0.233 | Jarque-Bera (JB): | 1.377 |
Skew: | 0.205 | Prob(JB): | 0.502 |
Kurtosis: | 1.874 | Cond. No. | 133. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.063 | 0.807 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.328 |
Method: | Least Squares | F-statistic: | 3.281 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0623 |
Time: | 04:59:52 | Log-Likelihood: | -70.507 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -29.0873 | 310.172 | -0.094 | 0.927 | -711.772 653.597 |
C(dose)[T.1] | 314.1578 | 410.845 | 0.765 | 0.461 | -590.107 1218.422 |
expression | 15.1207 | 48.559 | 0.311 | 0.761 | -91.756 121.997 |
expression:C(dose)[T.1] | -43.5624 | 66.512 | -0.655 | 0.526 | -189.955 102.831 |
Omnibus: | 4.130 | Durbin-Watson: | 0.708 |
Prob(Omnibus): | 0.127 | Jarque-Bera (JB): | 2.481 |
Skew: | -0.996 | Prob(JB): | 0.289 |
Kurtosis: | 3.033 | Cond. No. | 435. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.942 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0272 |
Time: | 04:59:52 | Log-Likelihood: | -70.794 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.1174 | 207.029 | 0.575 | 0.576 | -331.960 570.195 |
C(dose)[T.1] | 45.4672 | 21.653 | 2.100 | 0.058 | -1.711 92.646 |
expression | -8.0979 | 32.385 | -0.250 | 0.807 | -78.658 62.462 |
Omnibus: | 2.994 | Durbin-Watson: | 0.846 |
Prob(Omnibus): | 0.224 | Jarque-Bera (JB): | 1.995 |
Skew: | -0.881 | Prob(JB): | 0.369 |
Kurtosis: | 2.702 | Cond. No. | 168. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:59:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.250 |
Model: | OLS | Adj. R-squared: | 0.192 |
Method: | Least Squares | F-statistic: | 4.337 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0576 |
Time: | 04:59:52 | Log-Likelihood: | -73.141 |
No. Observations: | 15 | AIC: | 150.3 |
Df Residuals: | 13 | BIC: | 151.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 430.8108 | 162.134 | 2.657 | 0.020 | 80.542 781.080 |
expression | -54.9327 | 26.378 | -2.082 | 0.058 | -111.920 2.054 |
Omnibus: | 0.765 | Durbin-Watson: | 1.453 |
Prob(Omnibus): | 0.682 | Jarque-Bera (JB): | 0.743 |
Skew: | -0.396 | Prob(JB): | 0.690 |
Kurtosis: | 2.250 | Cond. No. | 116. |