AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.311 0.583 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 03:50:07 Log-Likelihood: -100.82
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.5896 136.931 0.275 0.787 -249.010 324.189
C(dose)[T.1] -10.9419 188.430 -0.058 0.954 -405.330 383.446
expression 2.1957 18.073 0.121 0.905 -35.631 40.023
expression:C(dose)[T.1] 8.0498 24.387 0.330 0.745 -42.993 59.092
Omnibus: 0.540 Durbin-Watson: 1.976
Prob(Omnibus): 0.763 Jarque-Bera (JB): 0.628
Skew: 0.177 Prob(JB): 0.731
Kurtosis: 2.272 Cond. No. 442.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.43e-05
Time: 03:50:07 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.1270 89.975 0.046 0.964 -183.557 191.811
C(dose)[T.1] 51.1728 9.528 5.371 0.000 31.298 71.048
expression 6.6167 11.861 0.558 0.583 -18.125 31.358
Omnibus: 0.763 Durbin-Watson: 1.902
Prob(Omnibus): 0.683 Jarque-Bera (JB): 0.711
Skew: 0.118 Prob(JB): 0.701
Kurtosis: 2.172 Cond. No. 163.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:50:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.156
Model: OLS Adj. R-squared: 0.116
Method: Least Squares F-statistic: 3.883
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0621
Time: 03:50:07 Log-Likelihood: -111.15
No. Observations: 23 AIC: 226.3
Df Residuals: 21 BIC: 228.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -171.7832 127.806 -1.344 0.193 -437.570 94.004
expression 32.5553 16.521 1.970 0.062 -1.803 66.914
Omnibus: 0.469 Durbin-Watson: 2.592
Prob(Omnibus): 0.791 Jarque-Bera (JB): 0.590
Skew: 0.240 Prob(JB): 0.745
Kurtosis: 2.379 Cond. No. 152.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.994 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.579
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 5.042
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0194
Time: 03:50:07 Log-Likelihood: -68.812
No. Observations: 15 AIC: 145.6
Df Residuals: 11 BIC: 148.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.9272 106.187 -0.037 0.971 -237.644 229.790
C(dose)[T.1] 646.7144 324.574 1.992 0.072 -67.669 1361.098
expression 11.1660 16.535 0.675 0.513 -25.228 47.560
expression:C(dose)[T.1] -84.3023 45.707 -1.844 0.092 -184.903 16.298
Omnibus: 0.591 Durbin-Watson: 1.311
Prob(Omnibus): 0.744 Jarque-Bera (JB): 0.139
Skew: -0.233 Prob(JB): 0.933
Kurtosis: 2.925 Cond. No. 379.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0281
Time: 03:50:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.5794 108.530 0.613 0.551 -169.888 303.047
C(dose)[T.1] 49.0896 20.785 2.362 0.036 3.803 94.376
expression 0.1329 16.888 0.008 0.994 -36.662 36.928
Omnibus: 2.727 Durbin-Watson: 0.809
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.876
Skew: -0.845 Prob(JB): 0.391
Kurtosis: 2.622 Cond. No. 97.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:50:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.193
Model: OLS Adj. R-squared: 0.130
Method: Least Squares F-statistic: 3.100
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.102
Time: 03:50:07 Log-Likelihood: -73.696
No. Observations: 15 AIC: 151.4
Df Residuals: 13 BIC: 152.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -84.8759 101.815 -0.834 0.420 -304.833 135.081
expression 26.1825 14.871 1.761 0.102 -5.943 58.308
Omnibus: 1.230 Durbin-Watson: 1.266
Prob(Omnibus): 0.541 Jarque-Bera (JB): 0.807
Skew: -0.164 Prob(JB): 0.668
Kurtosis: 1.912 Cond. No. 78.0