AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.286 | 0.599 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.06 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000120 |
Time: | 04:54:03 | Log-Likelihood: | -100.84 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -181.2166 | 498.777 | -0.363 | 0.720 | -1225.169 862.736 |
C(dose)[T.1] | 220.4681 | 530.462 | 0.416 | 0.682 | -889.801 1330.738 |
expression | 27.0635 | 57.333 | 0.472 | 0.642 | -92.936 147.063 |
expression:C(dose)[T.1] | -18.7280 | 61.419 | -0.305 | 0.764 | -147.279 109.823 |
Omnibus: | 0.208 | Durbin-Watson: | 1.786 |
Prob(Omnibus): | 0.901 | Jarque-Bera (JB): | 0.411 |
Skew: | 0.001 | Prob(JB): | 0.814 |
Kurtosis: | 2.345 | Cond. No. | 1.55e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.46e-05 |
Time: | 04:54:03 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -39.2564 | 174.868 | -0.224 | 0.825 | -404.024 325.511 |
C(dose)[T.1] | 58.7721 | 13.383 | 4.392 | 0.000 | 30.856 86.688 |
expression | 10.7443 | 20.090 | 0.535 | 0.599 | -31.163 52.652 |
Omnibus: | 0.142 | Durbin-Watson: | 1.777 |
Prob(Omnibus): | 0.931 | Jarque-Bera (JB): | 0.361 |
Skew: | -0.035 | Prob(JB): | 0.835 |
Kurtosis: | 2.390 | Cond. No. | 346. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:54:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.320 |
Model: | OLS | Adj. R-squared: | 0.288 |
Method: | Least Squares | F-statistic: | 9.899 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00487 |
Time: | 04:54:03 | Log-Likelihood: | -108.66 |
No. Observations: | 23 | AIC: | 221.3 |
Df Residuals: | 21 | BIC: | 223.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 555.4476 | 151.323 | 3.671 | 0.001 | 240.754 870.141 |
expression | -56.2525 | 17.879 | -3.146 | 0.005 | -93.435 -19.071 |
Omnibus: | 0.366 | Durbin-Watson: | 2.325 |
Prob(Omnibus): | 0.833 | Jarque-Bera (JB): | 0.518 |
Skew: | 0.198 | Prob(JB): | 0.772 |
Kurtosis: | 2.381 | Cond. No. | 218. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.207 | 0.658 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.481 |
Model: | OLS | Adj. R-squared: | 0.339 |
Method: | Least Squares | F-statistic: | 3.397 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0573 |
Time: | 04:54:03 | Log-Likelihood: | -70.382 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -465.2220 | 645.827 | -0.720 | 0.486 | -1886.679 956.235 |
C(dose)[T.1] | 592.7675 | 778.514 | 0.761 | 0.462 | -1120.730 2306.265 |
expression | 60.6861 | 73.569 | 0.825 | 0.427 | -101.237 222.610 |
expression:C(dose)[T.1] | -61.9492 | 89.101 | -0.695 | 0.501 | -258.059 134.161 |
Omnibus: | 1.974 | Durbin-Watson: | 0.893 |
Prob(Omnibus): | 0.373 | Jarque-Bera (JB): | 1.392 |
Skew: | -0.713 | Prob(JB): | 0.499 |
Kurtosis: | 2.560 | Cond. No. | 1.24e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.072 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0253 |
Time: | 04:54:03 | Log-Likelihood: | -70.705 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -94.5335 | 356.535 | -0.265 | 0.795 | -871.356 682.289 |
C(dose)[T.1] | 51.6177 | 16.490 | 3.130 | 0.009 | 15.689 87.546 |
expression | 18.4527 | 40.600 | 0.454 | 0.658 | -70.007 106.913 |
Omnibus: | 2.801 | Durbin-Watson: | 0.864 |
Prob(Omnibus): | 0.247 | Jarque-Bera (JB): | 1.725 |
Skew: | -0.826 | Prob(JB): | 0.422 |
Kurtosis: | 2.822 | Cond. No. | 405. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:54:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.060 |
Method: | Least Squares | F-statistic: | 0.2064 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.657 |
Time: | 04:54:03 | Log-Likelihood: | -75.182 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 290.4799 | 433.337 | 0.670 | 0.514 | -645.688 1226.647 |
expression | -22.6036 | 49.754 | -0.454 | 0.657 | -130.092 84.884 |
Omnibus: | 0.210 | Durbin-Watson: | 1.547 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.402 |
Skew: | -0.016 | Prob(JB): | 0.818 |
Kurtosis: | 2.199 | Cond. No. | 379. |