AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.381 0.254 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 13.17
Date: Thu, 03 Apr 2025 Prob (F-statistic): 6.93e-05
Time: 23:00:39 Log-Likelihood: -100.17
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 200.7201 196.142 1.023 0.319 -209.810 611.250
C(dose)[T.1] 248.7929 397.217 0.626 0.539 -582.592 1080.178
expression -15.4081 20.618 -0.747 0.464 -58.562 27.746
expression:C(dose)[T.1] -18.3498 39.842 -0.461 0.650 -101.740 65.041
Omnibus: 1.098 Durbin-Watson: 1.860
Prob(Omnibus): 0.578 Jarque-Bera (JB): 0.627
Skew: 0.403 Prob(JB): 0.731
Kurtosis: 2.921 Cond. No. 1.08e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 20.46
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.45e-05
Time: 23:00:39 Log-Likelihood: -100.29
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 247.4464 164.525 1.504 0.148 -95.747 590.640
C(dose)[T.1] 65.9627 13.688 4.819 0.000 37.411 94.514
expression -20.3222 17.292 -1.175 0.254 -56.392 15.747
Omnibus: 0.750 Durbin-Watson: 1.862
Prob(Omnibus): 0.687 Jarque-Bera (JB): 0.437
Skew: 0.330 Prob(JB): 0.804
Kurtosis: 2.862 Cond. No. 386.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.291
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 8.600
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00796
Time: 23:00:39 Log-Likelihood: -109.16
No. Observations: 23 AIC: 222.3
Df Residuals: 21 BIC: 224.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -362.3389 150.867 -2.402 0.026 -676.083 -48.595
expression 45.0808 15.373 2.932 0.008 13.111 77.050
Omnibus: 2.326 Durbin-Watson: 2.279
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.234
Skew: 0.193 Prob(JB): 0.539
Kurtosis: 1.932 Cond. No. 246.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.618 0.228 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.517
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 3.920
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0397
Time: 23:00:39 Log-Likelihood: -69.846
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 278.2689 199.861 1.392 0.191 -161.622 718.160
C(dose)[T.1] -19.9639 294.464 -0.068 0.947 -668.076 628.148
expression -23.7899 22.515 -1.057 0.313 -73.346 25.766
expression:C(dose)[T.1] 7.8568 33.121 0.237 0.817 -65.041 80.755
Omnibus: 2.981 Durbin-Watson: 1.162
Prob(Omnibus): 0.225 Jarque-Bera (JB): 2.046
Skew: -0.887 Prob(JB): 0.360
Kurtosis: 2.640 Cond. No. 451.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 6.352
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0131
Time: 23:00:39 Log-Likelihood: -69.885
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 246.0899 140.887 1.747 0.106 -60.876 553.056
C(dose)[T.1] 49.7932 14.783 3.368 0.006 17.584 82.002
expression -20.1590 15.850 -1.272 0.228 -54.693 14.375
Omnibus: 2.817 Durbin-Watson: 1.094
Prob(Omnibus): 0.244 Jarque-Bera (JB): 1.917
Skew: -0.858 Prob(JB): 0.383
Kurtosis: 2.648 Cond. No. 172.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:40 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.055
Model: OLS Adj. R-squared: -0.018
Method: Least Squares F-statistic: 0.7565
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.400
Time: 23:00:40 Log-Likelihood: -74.876
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 257.6012 188.745 1.365 0.195 -150.157 665.359
expression -18.4644 21.230 -0.870 0.400 -64.329 27.400
Omnibus: 1.581 Durbin-Watson: 1.987
Prob(Omnibus): 0.454 Jarque-Bera (JB): 0.902
Skew: 0.175 Prob(JB): 0.637
Kurtosis: 1.851 Cond. No. 172.