AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.128 0.160 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 14.20
Date: Tue, 28 Jan 2025 Prob (F-statistic): 4.31e-05
Time: 22:00:26 Log-Likelihood: -99.581
No. Observations: 23 AIC: 207.2
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.0916 59.561 1.412 0.174 -40.571 208.754
C(dose)[T.1] 97.2319 76.760 1.267 0.221 -63.429 257.893
expression -4.2702 8.470 -0.504 0.620 -21.999 13.458
expression:C(dose)[T.1] -8.7731 11.994 -0.731 0.473 -33.878 16.331
Omnibus: 2.588 Durbin-Watson: 2.473
Prob(Omnibus): 0.274 Jarque-Bera (JB): 1.976
Skew: 0.707 Prob(JB): 0.372
Kurtosis: 2.752 Cond. No. 156.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.651
Method: Least Squares F-statistic: 21.53
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.03e-05
Time: 22:00:26 Log-Likelihood: -99.900
No. Observations: 23 AIC: 205.8
Df Residuals: 20 BIC: 209.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.7083 41.876 2.739 0.013 27.355 202.061
C(dose)[T.1] 41.7381 11.522 3.623 0.002 17.704 65.772
expression -8.6453 5.927 -1.459 0.160 -21.009 3.718
Omnibus: 2.557 Durbin-Watson: 2.540
Prob(Omnibus): 0.278 Jarque-Bera (JB): 1.752
Skew: 0.675 Prob(JB): 0.416
Kurtosis: 2.928 Cond. No. 67.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:00:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.475
Model: OLS Adj. R-squared: 0.450
Method: Least Squares F-statistic: 18.97
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000277
Time: 22:00:26 Log-Likelihood: -105.70
No. Observations: 23 AIC: 215.4
Df Residuals: 21 BIC: 217.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 228.8640 34.636 6.608 0.000 156.834 300.894
expression -23.4641 5.387 -4.356 0.000 -34.666 -12.262
Omnibus: 3.315 Durbin-Watson: 3.307
Prob(Omnibus): 0.191 Jarque-Bera (JB): 2.353
Skew: 0.783 Prob(JB): 0.308
Kurtosis: 2.959 Cond. No. 43.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.892 0.364 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.518
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0525
Time: 22:00:26 Log-Likelihood: -70.255
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.7072 112.467 1.420 0.183 -87.832 407.246
C(dose)[T.1] 10.7526 164.996 0.065 0.949 -352.401 373.906
expression -12.2096 14.802 -0.825 0.427 -44.789 20.370
expression:C(dose)[T.1] 5.2218 21.510 0.243 0.813 -42.122 52.566
Omnibus: 1.145 Durbin-Watson: 0.975
Prob(Omnibus): 0.564 Jarque-Bera (JB): 0.965
Skew: -0.437 Prob(JB): 0.617
Kurtosis: 2.117 Cond. No. 214.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 5.694
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0182
Time: 22:00:26 Log-Likelihood: -70.295
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.0188 78.710 1.792 0.098 -30.475 312.512
C(dose)[T.1] 50.6203 15.260 3.317 0.006 17.371 83.869
expression -9.7369 10.310 -0.944 0.364 -32.201 12.727
Omnibus: 1.493 Durbin-Watson: 0.955
Prob(Omnibus): 0.474 Jarque-Bera (JB): 1.115
Skew: -0.451 Prob(JB): 0.573
Kurtosis: 2.016 Cond. No. 81.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:00:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.016
Model: OLS Adj. R-squared: -0.059
Method: Least Squares F-statistic: 0.2170
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.649
Time: 22:00:26 Log-Likelihood: -75.176
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.2142 104.701 1.358 0.197 -83.978 368.406
expression -6.3578 13.648 -0.466 0.649 -35.843 23.127
Omnibus: 1.910 Durbin-Watson: 1.701
Prob(Omnibus): 0.385 Jarque-Bera (JB): 1.008
Skew: 0.225 Prob(JB): 0.604
Kurtosis: 1.812 Cond. No. 81.0