AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.077 0.784 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.734
Model: OLS Adj. R-squared: 0.693
Method: Least Squares F-statistic: 17.52
Date: Mon, 27 Jan 2025 Prob (F-statistic): 1.07e-05
Time: 21:34:49 Log-Likelihood: -97.856
No. Observations: 23 AIC: 203.7
Df Residuals: 19 BIC: 208.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.3175 31.340 0.074 0.942 -63.277 67.912
C(dose)[T.1] 179.1970 51.769 3.461 0.003 70.844 287.551
expression 17.8208 10.601 1.681 0.109 -4.368 40.009
expression:C(dose)[T.1] -44.6400 18.204 -2.452 0.024 -82.741 -6.539
Omnibus: 0.973 Durbin-Watson: 2.522
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.175
Skew: -0.151 Prob(JB): 0.916
Kurtosis: 3.303 Cond. No. 51.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.73e-05
Time: 21:34:49 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.4003 28.709 1.616 0.122 -13.486 106.286
C(dose)[T.1] 53.7494 8.877 6.055 0.000 35.231 72.267
expression 2.6815 9.638 0.278 0.784 -17.423 22.786
Omnibus: 0.255 Durbin-Watson: 1.913
Prob(Omnibus): 0.880 Jarque-Bera (JB): 0.444
Skew: 0.098 Prob(JB): 0.801
Kurtosis: 2.349 Cond. No. 21.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:34:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.2045
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.656
Time: 21:34:49 Log-Likelihood: -112.99
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 99.7499 44.880 2.223 0.037 6.416 193.083
expression -7.0580 15.609 -0.452 0.656 -39.518 25.402
Omnibus: 2.371 Durbin-Watson: 2.480
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.184
Skew: 0.115 Prob(JB): 0.553
Kurtosis: 1.913 Cond. No. 20.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.081 0.319 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 3.599
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0496
Time: 21:34:49 Log-Likelihood: -70.171
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.0170 84.280 0.131 0.898 -174.483 196.517
C(dose)[T.1] 13.3058 149.906 0.089 0.931 -316.635 343.247
expression 17.0091 25.175 0.676 0.513 -38.400 72.419
expression:C(dose)[T.1] 5.8813 39.647 0.148 0.885 -81.380 93.143
Omnibus: 1.000 Durbin-Watson: 1.162
Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.833
Skew: -0.500 Prob(JB): 0.659
Kurtosis: 2.422 Cond. No. 97.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.410
Method: Least Squares F-statistic: 5.865
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0167
Time: 21:34:49 Log-Likelihood: -70.186
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.1523 62.790 0.050 0.961 -133.655 139.960
C(dose)[T.1] 35.3238 20.131 1.755 0.105 -8.538 79.186
expression 19.3804 18.639 1.040 0.319 -21.230 59.991
Omnibus: 1.150 Durbin-Watson: 1.126
Prob(Omnibus): 0.563 Jarque-Bera (JB): 0.931
Skew: -0.538 Prob(JB): 0.628
Kurtosis: 2.423 Cond. No. 34.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:34:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.365
Model: OLS Adj. R-squared: 0.316
Method: Least Squares F-statistic: 7.459
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0171
Time: 21:34:49 Log-Likelihood: -71.899
No. Observations: 15 AIC: 147.8
Df Residuals: 13 BIC: 149.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -58.1704 56.181 -1.035 0.319 -179.543 63.202
expression 41.0557 15.032 2.731 0.017 8.580 73.531
Omnibus: 0.666 Durbin-Watson: 1.629
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.674
Skew: 0.379 Prob(JB): 0.714
Kurtosis: 2.289 Cond. No. 27.7