AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.018 | 0.894 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.74 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000141 |
Time: | 22:44:35 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.2852 | 174.777 | 0.385 | 0.705 | -298.528 433.098 |
C(dose)[T.1] | 97.3147 | 424.338 | 0.229 | 0.821 | -790.835 985.465 |
expression | -1.5187 | 20.285 | -0.075 | 0.941 | -43.977 40.939 |
expression:C(dose)[T.1] | -4.7544 | 47.101 | -0.101 | 0.921 | -103.337 93.828 |
Omnibus: | 0.429 | Durbin-Watson: | 1.936 |
Prob(Omnibus): | 0.807 | Jarque-Bera (JB): | 0.547 |
Skew: | 0.082 | Prob(JB): | 0.761 |
Kurtosis: | 2.263 | Cond. No. | 987. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.81e-05 |
Time: | 22:44:35 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.8786 | 153.806 | 0.487 | 0.632 | -245.956 395.713 |
C(dose)[T.1] | 54.5006 | 12.315 | 4.425 | 0.000 | 28.811 80.190 |
expression | -2.4006 | 17.849 | -0.134 | 0.894 | -39.633 34.832 |
Omnibus: | 0.423 | Durbin-Watson: | 1.922 |
Prob(Omnibus): | 0.809 | Jarque-Bera (JB): | 0.541 |
Skew: | 0.057 | Prob(JB): | 0.763 |
Kurtosis: | 2.257 | Cond. No. | 316. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:44:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.306 |
Model: | OLS | Adj. R-squared: | 0.273 |
Method: | Least Squares | F-statistic: | 9.261 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00618 |
Time: | 22:44:35 | Log-Likelihood: | -108.90 |
No. Observations: | 23 | AIC: | 221.8 |
Df Residuals: | 21 | BIC: | 224.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -389.6363 | 154.347 | -2.524 | 0.020 | -710.618 -68.654 |
expression | 53.0809 | 17.442 | 3.043 | 0.006 | 16.807 89.354 |
Omnibus: | 3.933 | Durbin-Watson: | 1.721 |
Prob(Omnibus): | 0.140 | Jarque-Bera (JB): | 1.493 |
Skew: | 0.128 | Prob(JB): | 0.474 |
Kurtosis: | 1.778 | Cond. No. | 230. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.339 | 0.152 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.561 |
Model: | OLS | Adj. R-squared: | 0.441 |
Method: | Least Squares | F-statistic: | 4.686 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0241 |
Time: | 22:44:35 | Log-Likelihood: | -69.126 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 223.8464 | 200.868 | 1.114 | 0.289 | -218.260 665.953 |
C(dose)[T.1] | 315.5479 | 348.623 | 0.905 | 0.385 | -451.767 1082.863 |
expression | -19.2924 | 24.740 | -0.780 | 0.452 | -73.744 35.159 |
expression:C(dose)[T.1] | -31.6020 | 42.276 | -0.748 | 0.470 | -124.650 61.446 |
Omnibus: | 1.171 | Durbin-Watson: | 0.777 |
Prob(Omnibus): | 0.557 | Jarque-Bera (JB): | 0.622 |
Skew: | -0.489 | Prob(JB): | 0.733 |
Kurtosis: | 2.807 | Cond. No. | 495. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.539 |
Model: | OLS | Adj. R-squared: | 0.462 |
Method: | Least Squares | F-statistic: | 7.007 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00964 |
Time: | 22:44:36 | Log-Likelihood: | -69.497 |
No. Observations: | 15 | AIC: | 145.0 |
Df Residuals: | 12 | BIC: | 147.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 311.5910 | 159.978 | 1.948 | 0.075 | -36.970 660.152 |
C(dose)[T.1] | 55.1912 | 14.922 | 3.699 | 0.003 | 22.678 87.704 |
expression | -30.1148 | 19.689 | -1.530 | 0.152 | -73.013 12.783 |
Omnibus: | 1.607 | Durbin-Watson: | 0.752 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.191 |
Skew: | -0.642 | Prob(JB): | 0.551 |
Kurtosis: | 2.493 | Cond. No. | 186. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:44:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.063 |
Method: | Least Squares | F-statistic: | 0.1694 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.687 |
Time: | 22:44:36 | Log-Likelihood: | -75.203 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.9289 | 219.546 | 0.838 | 0.417 | -290.372 658.230 |
expression | -10.9890 | 26.700 | -0.412 | 0.687 | -68.672 46.694 |
Omnibus: | 1.559 | Durbin-Watson: | 1.734 |
Prob(Omnibus): | 0.459 | Jarque-Bera (JB): | 0.866 |
Skew: | 0.104 | Prob(JB): | 0.648 |
Kurtosis: | 1.841 | Cond. No. | 181. |