AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.059 0.167 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 13.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.74e-05
Time: 06:20:55 Log-Likelihood: -99.934
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.8141 29.333 0.812 0.427 -37.581 85.209
C(dose)[T.1] 55.1994 43.225 1.277 0.217 -35.271 145.670
expression 8.5913 8.120 1.058 0.303 -8.405 25.588
expression:C(dose)[T.1] -0.6384 11.886 -0.054 0.958 -25.516 24.239
Omnibus: 0.830 Durbin-Watson: 1.924
Prob(Omnibus): 0.660 Jarque-Bera (JB): 0.725
Skew: -0.077 Prob(JB): 0.696
Kurtosis: 2.144 Cond. No. 50.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.650
Method: Least Squares F-statistic: 21.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.06e-05
Time: 06:20:55 Log-Likelihood: -99.936
No. Observations: 23 AIC: 205.9
Df Residuals: 20 BIC: 209.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.8683 21.249 1.170 0.256 -19.456 69.193
C(dose)[T.1] 52.9238 8.356 6.334 0.000 35.494 70.353
expression 8.2933 5.780 1.435 0.167 -3.764 20.351
Omnibus: 0.822 Durbin-Watson: 1.916
Prob(Omnibus): 0.663 Jarque-Bera (JB): 0.721
Skew: -0.074 Prob(JB): 0.697
Kurtosis: 2.145 Cond. No. 20.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:20:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.044
Model: OLS Adj. R-squared: -0.002
Method: Least Squares F-statistic: 0.9558
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.339
Time: 06:20:55 Log-Likelihood: -112.59
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.6843 35.520 1.286 0.212 -28.184 119.552
expression 9.5555 9.774 0.978 0.339 -10.771 29.882
Omnibus: 3.235 Durbin-Watson: 2.493
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.559
Skew: 0.291 Prob(JB): 0.459
Kurtosis: 1.865 Cond. No. 19.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.279 0.280 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.770
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0440
Time: 06:20:55 Log-Likelihood: -69.996
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.3154 69.076 1.698 0.118 -34.719 269.350
C(dose)[T.1] 31.9548 79.261 0.403 0.695 -142.497 206.407
expression -14.9570 20.428 -0.732 0.479 -59.920 30.006
expression:C(dose)[T.1] 7.4770 22.152 0.338 0.742 -41.280 56.234
Omnibus: 3.810 Durbin-Watson: 0.919
Prob(Omnibus): 0.149 Jarque-Bera (JB): 2.150
Skew: -0.926 Prob(JB): 0.341
Kurtosis: 3.105 Cond. No. 69.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 6.045
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0153
Time: 06:20:55 Log-Likelihood: -70.073
No. Observations: 15 AIC: 146.1
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.1071 27.614 3.480 0.005 35.942 156.272
C(dose)[T.1] 58.0438 16.884 3.438 0.005 21.256 94.832
expression -8.5983 7.603 -1.131 0.280 -25.164 7.968
Omnibus: 4.051 Durbin-Watson: 0.918
Prob(Omnibus): 0.132 Jarque-Bera (JB): 2.274
Skew: -0.951 Prob(JB): 0.321
Kurtosis: 3.156 Cond. No. 16.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:20:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.065
Method: Least Squares F-statistic: 0.1484
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.706
Time: 06:20:55 Log-Likelihood: -75.215
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.0224 36.836 2.172 0.049 0.442 159.603
expression 3.5128 9.120 0.385 0.706 -16.190 23.216
Omnibus: 0.622 Durbin-Watson: 1.468
Prob(Omnibus): 0.733 Jarque-Bera (JB): 0.589
Skew: 0.059 Prob(JB): 0.745
Kurtosis: 2.036 Cond. No. 15.6