AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.650 0.214 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.31e-05
Time: 03:51:57 Log-Likelihood: -99.837
No. Observations: 23 AIC: 207.7
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 237.3649 127.210 1.866 0.078 -28.889 503.619
C(dose)[T.1] -91.8750 201.272 -0.456 0.653 -513.143 329.393
expression -24.9081 17.281 -1.441 0.166 -61.078 11.262
expression:C(dose)[T.1] 19.7744 27.263 0.725 0.477 -37.287 76.836
Omnibus: 0.344 Durbin-Watson: 1.932
Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.499
Skew: 0.067 Prob(JB): 0.779
Kurtosis: 2.291 Cond. No. 441.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 20.85
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.28e-05
Time: 03:51:57 Log-Likelihood: -100.15
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.9410 97.287 1.839 0.081 -23.995 381.877
C(dose)[T.1] 53.9818 8.444 6.393 0.000 36.368 71.596
expression -16.9628 13.207 -1.284 0.214 -44.511 10.586
Omnibus: 0.998 Durbin-Watson: 1.959
Prob(Omnibus): 0.607 Jarque-Bera (JB): 0.806
Skew: 0.127 Prob(JB): 0.668
Kurtosis: 2.119 Cond. No. 174.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:51:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.2832
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.600
Time: 03:51:57 Log-Likelihood: -112.95
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.7650 165.604 1.013 0.323 -176.628 512.158
expression -11.9444 22.445 -0.532 0.600 -58.620 34.732
Omnibus: 3.256 Durbin-Watson: 2.511
Prob(Omnibus): 0.196 Jarque-Bera (JB): 1.701
Skew: 0.368 Prob(JB): 0.427
Kurtosis: 1.889 Cond. No. 174.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.796 0.033 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.630
Model: OLS Adj. R-squared: 0.529
Method: Least Squares F-statistic: 6.235
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00990
Time: 03:51:57 Log-Likelihood: -67.849
No. Observations: 15 AIC: 143.7
Df Residuals: 11 BIC: 146.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 379.6322 231.216 1.642 0.129 -129.270 888.535
C(dose)[T.1] 130.6866 311.812 0.419 0.683 -555.606 816.980
expression -42.4449 31.406 -1.351 0.204 -111.569 26.679
expression:C(dose)[T.1] -8.4709 41.436 -0.204 0.842 -99.671 82.729
Omnibus: 0.979 Durbin-Watson: 1.593
Prob(Omnibus): 0.613 Jarque-Bera (JB): 0.701
Skew: 0.021 Prob(JB): 0.704
Kurtosis: 1.942 Cond. No. 491.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.628
Model: OLS Adj. R-squared: 0.566
Method: Least Squares F-statistic: 10.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00264
Time: 03:51:57 Log-Likelihood: -67.878
No. Observations: 15 AIC: 141.8
Df Residuals: 12 BIC: 143.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 415.4262 144.857 2.868 0.014 99.809 731.043
C(dose)[T.1] 67.0210 14.895 4.499 0.001 34.567 99.475
expression -47.3112 19.652 -2.407 0.033 -90.129 -4.493
Omnibus: 1.219 Durbin-Watson: 1.658
Prob(Omnibus): 0.544 Jarque-Bera (JB): 0.767
Skew: 0.011 Prob(JB): 0.681
Kurtosis: 1.892 Cond. No. 174.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:51:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01565
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.902
Time: 03:51:57 Log-Likelihood: -75.291
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.0512 203.190 0.586 0.568 -319.915 558.017
expression -3.3593 26.856 -0.125 0.902 -61.378 54.660
Omnibus: 0.646 Durbin-Watson: 1.652
Prob(Omnibus): 0.724 Jarque-Bera (JB): 0.601
Skew: 0.083 Prob(JB): 0.740
Kurtosis: 2.033 Cond. No. 154.