AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.345 | 0.082 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 14.81 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.28e-05 |
Time: | 19:27:18 | Log-Likelihood: | -99.242 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 232.0009 | 183.770 | 1.262 | 0.222 | -152.635 616.637 |
C(dose)[T.1] | 122.0007 | 244.892 | 0.498 | 0.624 | -390.564 634.566 |
expression | -21.6343 | 22.351 | -0.968 | 0.345 | -68.415 25.146 |
expression:C(dose)[T.1] | -7.7608 | 29.526 | -0.263 | 0.795 | -69.559 54.037 |
Omnibus: | 0.170 | Durbin-Watson: | 2.393 |
Prob(Omnibus): | 0.918 | Jarque-Bera (JB): | 0.384 |
Skew: | 0.015 | Prob(JB): | 0.825 |
Kurtosis: | 2.368 | Cond. No. | 666. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.699 |
Model: | OLS | Adj. R-squared: | 0.669 |
Method: | Least Squares | F-statistic: | 23.26 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 6.04e-06 |
Time: | 19:27:18 | Log-Likelihood: | -99.284 |
No. Observations: | 23 | AIC: | 204.6 |
Df Residuals: | 20 | BIC: | 208.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 268.5490 | 117.329 | 2.289 | 0.033 | 23.806 513.292 |
C(dose)[T.1] | 57.6710 | 8.456 | 6.820 | 0.000 | 40.032 75.310 |
expression | -26.0816 | 14.261 | -1.829 | 0.082 | -55.829 3.665 |
Omnibus: | 0.265 | Durbin-Watson: | 2.396 |
Prob(Omnibus): | 0.876 | Jarque-Bera (JB): | 0.449 |
Skew: | 0.010 | Prob(JB): | 0.799 |
Kurtosis: | 2.316 | Cond. No. | 244. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 19:27:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.002316 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.962 |
Time: | 19:27:18 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.9889 | 202.278 | 0.346 | 0.733 | -350.671 490.649 |
expression | 1.1725 | 24.363 | 0.048 | 0.962 | -49.492 51.837 |
Omnibus: | 3.307 | Durbin-Watson: | 2.479 |
Prob(Omnibus): | 0.191 | Jarque-Bera (JB): | 1.572 |
Skew: | 0.291 | Prob(JB): | 0.456 |
Kurtosis: | 1.859 | Cond. No. | 236. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.058 | 0.814 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.303 |
Method: | Least Squares | F-statistic: | 3.032 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0750 |
Time: | 19:27:18 | Log-Likelihood: | -70.781 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -27.0685 | 347.675 | -0.078 | 0.939 | -792.296 738.159 |
C(dose)[T.1] | 125.4029 | 489.270 | 0.256 | 0.802 | -951.472 1202.278 |
expression | 11.2049 | 41.201 | 0.272 | 0.791 | -79.477 101.887 |
expression:C(dose)[T.1] | -8.9996 | 58.466 | -0.154 | 0.880 | -137.683 119.684 |
Omnibus: | 2.359 | Durbin-Watson: | 0.859 |
Prob(Omnibus): | 0.308 | Jarque-Bera (JB): | 1.628 |
Skew: | -0.782 | Prob(JB): | 0.443 |
Kurtosis: | 2.601 | Cond. No. | 674. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.937 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0273 |
Time: | 19:27:19 | Log-Likelihood: | -70.797 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.6219 | 236.571 | 0.045 | 0.965 | -504.823 526.067 |
C(dose)[T.1] | 50.1354 | 16.180 | 3.099 | 0.009 | 14.881 85.389 |
expression | 6.7358 | 28.018 | 0.240 | 0.814 | -54.311 67.782 |
Omnibus: | 2.911 | Durbin-Watson: | 0.840 |
Prob(Omnibus): | 0.233 | Jarque-Bera (JB): | 1.902 |
Skew: | -0.862 | Prob(JB): | 0.386 |
Kurtosis: | 2.732 | Cond. No. | 257. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 19:27:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.063 |
Method: | Least Squares | F-statistic: | 0.1646 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.692 |
Time: | 19:27:19 | Log-Likelihood: | -75.206 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.5445 | 293.150 | 0.725 | 0.481 | -420.768 845.857 |
expression | -14.2211 | 35.048 | -0.406 | 0.692 | -89.938 61.496 |
Omnibus: | 0.062 | Durbin-Watson: | 1.542 |
Prob(Omnibus): | 0.969 | Jarque-Bera (JB): | 0.292 |
Skew: | 0.025 | Prob(JB): | 0.864 |
Kurtosis: | 2.318 | Cond. No. | 246. |