AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.160 | 0.091 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 14.75 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.36e-05 |
Time: | 23:01:29 | Log-Likelihood: | -99.273 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -72.9930 | 105.640 | -0.691 | 0.498 | -294.100 148.114 |
C(dose)[T.1] | 108.4673 | 119.043 | 0.911 | 0.374 | -140.692 357.627 |
expression | 19.9492 | 16.543 | 1.206 | 0.243 | -14.676 54.574 |
expression:C(dose)[T.1] | -7.8161 | 18.921 | -0.413 | 0.684 | -47.418 31.786 |
Omnibus: | 1.552 | Durbin-Watson: | 2.100 |
Prob(Omnibus): | 0.460 | Jarque-Bera (JB): | 1.051 |
Skew: | 0.216 | Prob(JB): | 0.591 |
Kurtosis: | 2.046 | Cond. No. | 264. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.667 |
Method: | Least Squares | F-statistic: | 23.00 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 6.53e-06 |
Time: | 23:01:29 | Log-Likelihood: | -99.376 |
No. Observations: | 23 | AIC: | 204.8 |
Df Residuals: | 20 | BIC: | 208.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.8945 | 50.437 | -0.692 | 0.497 | -140.104 70.315 |
C(dose)[T.1] | 59.4333 | 8.842 | 6.722 | 0.000 | 40.990 77.877 |
expression | 13.9742 | 7.861 | 1.778 | 0.091 | -2.423 30.371 |
Omnibus: | 1.691 | Durbin-Watson: | 1.998 |
Prob(Omnibus): | 0.429 | Jarque-Bera (JB): | 1.135 |
Skew: | 0.257 | Prob(JB): | 0.567 |
Kurtosis: | 2.041 | Cond. No. | 79.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:01:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.2608 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.615 |
Time: | 23:01:29 | Log-Likelihood: | -112.96 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.9228 | 79.055 | 1.517 | 0.144 | -44.482 284.328 |
expression | -6.5188 | 12.765 | -0.511 | 0.615 | -33.065 20.027 |
Omnibus: | 2.280 | Durbin-Watson: | 2.323 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.375 |
Skew: | 0.314 | Prob(JB): | 0.503 |
Kurtosis: | 1.980 | Cond. No. | 70.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.298 | 0.595 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.591 |
Model: | OLS | Adj. R-squared: | 0.479 |
Method: | Least Squares | F-statistic: | 5.294 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0167 |
Time: | 23:01:29 | Log-Likelihood: | -68.598 |
No. Observations: | 15 | AIC: | 145.2 |
Df Residuals: | 11 | BIC: | 148.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 22.1096 | 82.248 | 0.269 | 0.793 | -158.916 203.136 |
C(dose)[T.1] | 318.2220 | 145.308 | 2.190 | 0.051 | -1.600 638.044 |
expression | 6.9441 | 12.503 | 0.555 | 0.590 | -20.574 34.462 |
expression:C(dose)[T.1] | -41.1911 | 22.146 | -1.860 | 0.090 | -89.933 7.551 |
Omnibus: | 0.382 | Durbin-Watson: | 1.153 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.447 |
Skew: | -0.302 | Prob(JB): | 0.800 |
Kurtosis: | 2.409 | Cond. No. | 170. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.372 |
Method: | Least Squares | F-statistic: | 5.155 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0242 |
Time: | 23:01:29 | Log-Likelihood: | -70.649 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.7919 | 74.795 | 1.441 | 0.175 | -55.172 270.756 |
C(dose)[T.1] | 49.2330 | 15.548 | 3.167 | 0.008 | 15.357 83.109 |
expression | -6.1848 | 11.328 | -0.546 | 0.595 | -30.866 18.496 |
Omnibus: | 2.078 | Durbin-Watson: | 0.947 |
Prob(Omnibus): | 0.354 | Jarque-Bera (JB): | 1.569 |
Skew: | -0.735 | Prob(JB): | 0.456 |
Kurtosis: | 2.408 | Cond. No. | 65.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:01:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.063 |
Method: | Least Squares | F-statistic: | 0.1672 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.689 |
Time: | 23:01:29 | Log-Likelihood: | -75.204 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.0395 | 96.805 | 1.374 | 0.193 | -76.094 342.173 |
expression | -6.0301 | 14.745 | -0.409 | 0.689 | -37.885 25.825 |
Omnibus: | 0.518 | Durbin-Watson: | 1.674 |
Prob(Omnibus): | 0.772 | Jarque-Bera (JB): | 0.548 |
Skew: | -0.042 | Prob(JB): | 0.760 |
Kurtosis: | 2.067 | Cond. No. | 64.4 |