AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.767 | 0.392 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.09e-05 |
Time: | 05:22:05 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.4562 | 111.808 | 0.836 | 0.414 | -140.560 327.472 |
C(dose)[T.1] | 140.9826 | 179.107 | 0.787 | 0.441 | -233.893 515.859 |
expression | -6.3529 | 18.071 | -0.352 | 0.729 | -44.176 31.470 |
expression:C(dose)[T.1] | -12.7539 | 27.741 | -0.460 | 0.651 | -70.816 45.308 |
Omnibus: | 0.667 | Durbin-Watson: | 1.529 |
Prob(Omnibus): | 0.716 | Jarque-Bera (JB): | 0.444 |
Skew: | -0.325 | Prob(JB): | 0.801 |
Kurtosis: | 2.796 | Cond. No. | 337. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.95e-05 |
Time: | 05:22:05 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 126.8929 | 83.231 | 1.525 | 0.143 | -46.723 300.509 |
C(dose)[T.1] | 58.7878 | 10.622 | 5.534 | 0.000 | 36.631 80.945 |
expression | -11.7651 | 13.438 | -0.876 | 0.392 | -39.796 16.265 |
Omnibus: | 0.437 | Durbin-Watson: | 1.489 |
Prob(Omnibus): | 0.804 | Jarque-Bera (JB): | 0.477 |
Skew: | -0.281 | Prob(JB): | 0.788 |
Kurtosis: | 2.574 | Cond. No. | 128. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.144 |
Model: | OLS | Adj. R-squared: | 0.104 |
Method: | Least Squares | F-statistic: | 3.543 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0737 |
Time: | 05:22:05 | Log-Likelihood: | -111.31 |
No. Observations: | 23 | AIC: | 226.6 |
Df Residuals: | 21 | BIC: | 228.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -123.9353 | 108.395 | -1.143 | 0.266 | -349.356 101.485 |
expression | 31.8229 | 16.906 | 1.882 | 0.074 | -3.335 66.980 |
Omnibus: | 1.515 | Durbin-Watson: | 2.879 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 1.297 |
Skew: | 0.432 | Prob(JB): | 0.523 |
Kurtosis: | 2.221 | Cond. No. | 107. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.769 | 0.050 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.620 |
Model: | OLS | Adj. R-squared: | 0.516 |
Method: | Least Squares | F-statistic: | 5.983 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0113 |
Time: | 05:22:05 | Log-Likelihood: | -68.043 |
No. Observations: | 15 | AIC: | 144.1 |
Df Residuals: | 11 | BIC: | 146.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -90.8856 | 346.055 | -0.263 | 0.798 | -852.547 670.776 |
C(dose)[T.1] | -186.7180 | 390.609 | -0.478 | 0.642 | -1046.443 673.007 |
expression | 21.1416 | 46.194 | 0.458 | 0.656 | -80.530 122.813 |
expression:C(dose)[T.1] | 34.1063 | 52.695 | 0.647 | 0.531 | -81.874 150.087 |
Omnibus: | 1.532 | Durbin-Watson: | 1.041 |
Prob(Omnibus): | 0.465 | Jarque-Bera (JB): | 1.072 |
Skew: | -0.620 | Prob(JB): | 0.585 |
Kurtosis: | 2.581 | Cond. No. | 637. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.606 |
Model: | OLS | Adj. R-squared: | 0.540 |
Method: | Least Squares | F-statistic: | 9.211 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00377 |
Time: | 05:22:06 | Log-Likelihood: | -68.323 |
No. Observations: | 15 | AIC: | 142.6 |
Df Residuals: | 12 | BIC: | 144.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -287.1510 | 162.655 | -1.765 | 0.103 | -641.545 67.243 |
C(dose)[T.1] | 65.8946 | 15.354 | 4.292 | 0.001 | 32.441 99.348 |
expression | 47.3512 | 21.682 | 2.184 | 0.050 | 0.109 94.593 |
Omnibus: | 0.741 | Durbin-Watson: | 1.041 |
Prob(Omnibus): | 0.691 | Jarque-Bera (JB): | 0.468 |
Skew: | -0.402 | Prob(JB): | 0.791 |
Kurtosis: | 2.678 | Cond. No. | 183. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.001234 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.973 |
Time: | 05:22:06 | Log-Likelihood: | -75.299 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.2895 | 210.212 | 0.410 | 0.688 | -367.847 540.426 |
expression | 1.0105 | 28.762 | 0.035 | 0.973 | -61.125 63.146 |
Omnibus: | 0.591 | Durbin-Watson: | 1.627 |
Prob(Omnibus): | 0.744 | Jarque-Bera (JB): | 0.576 |
Skew: | 0.044 | Prob(JB): | 0.750 |
Kurtosis: | 2.044 | Cond. No. | 154. |