AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.383 0.543 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.26
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000108
Time: 22:44:35 Log-Likelihood: -100.72
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 282.4598 299.859 0.942 0.358 -345.152 910.071
C(dose)[T.1] -173.4169 493.741 -0.351 0.729 -1206.829 859.995
expression -22.8058 29.954 -0.761 0.456 -85.501 39.889
expression:C(dose)[T.1] 22.6567 49.216 0.460 0.650 -80.353 125.666
Omnibus: 0.233 Durbin-Watson: 1.813
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.429
Skew: -0.031 Prob(JB): 0.807
Kurtosis: 2.334 Cond. No. 1.39e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.04
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.34e-05
Time: 22:44:35 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 198.4608 233.218 0.851 0.405 -288.023 684.944
C(dose)[T.1] 53.8429 8.725 6.171 0.000 35.642 72.044
expression -14.4130 23.294 -0.619 0.543 -63.004 34.178
Omnibus: 0.387 Durbin-Watson: 1.799
Prob(Omnibus): 0.824 Jarque-Bera (JB): 0.519
Skew: 0.003 Prob(JB): 0.771
Kurtosis: 2.264 Cond. No. 545.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:44:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0006026
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.981
Time: 22:44:35 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.2093 386.727 0.231 0.820 -715.033 893.452
expression -0.9468 38.569 -0.025 0.981 -81.154 79.261
Omnibus: 3.310 Durbin-Watson: 2.484
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.573
Skew: 0.291 Prob(JB): 0.455
Kurtosis: 1.858 Cond. No. 543.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.236 0.636 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.491
Model: OLS Adj. R-squared: 0.352
Method: Least Squares F-statistic: 3.534
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0519
Time: 22:44:36 Log-Likelihood: -70.239
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -343.9530 434.588 -0.791 0.445 -1300.474 612.568
C(dose)[T.1] 493.5336 542.742 0.909 0.383 -701.034 1688.101
expression 43.1581 45.577 0.947 0.364 -57.155 143.472
expression:C(dose)[T.1] -46.5532 56.549 -0.823 0.428 -171.017 77.911
Omnibus: 2.574 Durbin-Watson: 1.157
Prob(Omnibus): 0.276 Jarque-Bera (JB): 1.732
Skew: -0.814 Prob(JB): 0.421
Kurtosis: 2.656 Cond. No. 953.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.099
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0250
Time: 22:44:36 Log-Likelihood: -70.687
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -55.7075 253.948 -0.219 0.830 -609.014 497.599
C(dose)[T.1] 46.9367 16.268 2.885 0.014 11.492 82.381
expression 12.9182 26.615 0.485 0.636 -45.071 70.907
Omnibus: 2.548 Durbin-Watson: 0.919
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.836
Skew: -0.822 Prob(JB): 0.399
Kurtosis: 2.515 Cond. No. 318.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:44:36 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.084
Model: OLS Adj. R-squared: 0.014
Method: Least Squares F-statistic: 1.198
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.294
Time: 22:44:36 Log-Likelihood: -74.639
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -242.2029 307.073 -0.789 0.444 -905.594 421.188
expression 34.8946 31.887 1.094 0.294 -33.993 103.782
Omnibus: 1.155 Durbin-Watson: 1.824
Prob(Omnibus): 0.561 Jarque-Bera (JB): 0.871
Skew: 0.304 Prob(JB): 0.647
Kurtosis: 1.989 Cond. No. 307.