AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.385 0.253 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.64e-05
Time: 05:24:25 Log-Likelihood: -100.29
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -133.9159 191.926 -0.698 0.494 -535.621 267.789
C(dose)[T.1] 82.9853 325.930 0.255 0.802 -599.194 765.165
expression 19.7352 20.124 0.981 0.339 -22.385 61.855
expression:C(dose)[T.1] -2.9313 34.420 -0.085 0.933 -74.974 69.111
Omnibus: 0.535 Durbin-Watson: 1.440
Prob(Omnibus): 0.765 Jarque-Bera (JB): 0.522
Skew: -0.312 Prob(JB): 0.770
Kurtosis: 2.607 Cond. No. 872.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 20.47
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.45e-05
Time: 05:24:25 Log-Likelihood: -100.29
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -124.3645 151.831 -0.819 0.422 -441.078 192.349
C(dose)[T.1] 55.2387 8.634 6.398 0.000 37.229 73.248
expression 18.7332 15.916 1.177 0.253 -14.467 51.933
Omnibus: 0.561 Durbin-Watson: 1.447
Prob(Omnibus): 0.755 Jarque-Bera (JB): 0.513
Skew: -0.319 Prob(JB): 0.774
Kurtosis: 2.641 Cond. No. 344.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:24:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0001468
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.990
Time: 05:24:25 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.7781 252.687 0.328 0.746 -442.714 608.270
expression -0.3227 26.633 -0.012 0.990 -55.709 55.064
Omnibus: 3.302 Durbin-Watson: 2.491
Prob(Omnibus): 0.192 Jarque-Bera (JB): 1.570
Skew: 0.289 Prob(JB): 0.456
Kurtosis: 1.859 Cond. No. 336.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.582 0.460 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 3.787
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0435
Time: 05:24:25 Log-Likelihood: -69.980
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.1836 269.569 0.364 0.723 -495.134 691.501
C(dose)[T.1] 475.5976 481.692 0.987 0.345 -584.599 1535.794
expression -3.1767 27.819 -0.114 0.911 -64.405 58.052
expression:C(dose)[T.1] -41.8568 48.158 -0.869 0.403 -147.852 64.138
Omnibus: 3.662 Durbin-Watson: 0.753
Prob(Omnibus): 0.160 Jarque-Bera (JB): 2.553
Skew: -0.995 Prob(JB): 0.279
Kurtosis: 2.652 Cond. No. 776.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.387
Method: Least Squares F-statistic: 5.413
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0211
Time: 05:24:25 Log-Likelihood: -70.478
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 233.4079 217.886 1.071 0.305 -241.326 708.141
C(dose)[T.1] 57.2517 18.649 3.070 0.010 16.618 97.885
expression -17.1438 22.475 -0.763 0.460 -66.113 31.826
Omnibus: 3.885 Durbin-Watson: 0.869
Prob(Omnibus): 0.143 Jarque-Bera (JB): 2.606
Skew: -1.014 Prob(JB): 0.272
Kurtosis: 2.766 Cond. No. 286.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:24:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.061
Model: OLS Adj. R-squared: -0.011
Method: Least Squares F-statistic: 0.8501
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.373
Time: 05:24:25 Log-Likelihood: -74.825
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -124.1076 236.405 -0.525 0.608 -634.829 386.614
expression 21.9261 23.781 0.922 0.373 -29.450 73.302
Omnibus: 2.677 Durbin-Watson: 1.322
Prob(Omnibus): 0.262 Jarque-Bera (JB): 1.071
Skew: 0.036 Prob(JB): 0.585
Kurtosis: 1.693 Cond. No. 241.