AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.760 | 0.394 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.47 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.74e-05 |
Time: | 03:32:49 | Log-Likelihood: | -100.59 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -9.5744 | 75.206 | -0.127 | 0.900 | -166.982 147.833 |
C(dose)[T.1] | 89.5872 | 125.364 | 0.715 | 0.484 | -172.803 351.978 |
expression | 9.9715 | 11.719 | 0.851 | 0.405 | -14.556 34.499 |
expression:C(dose)[T.1] | -5.4814 | 20.095 | -0.273 | 0.788 | -47.541 36.578 |
Omnibus: | 0.982 | Durbin-Watson: | 1.792 |
Prob(Omnibus): | 0.612 | Jarque-Bera (JB): | 0.774 |
Skew: | 0.045 | Prob(JB): | 0.679 |
Kurtosis: | 2.106 | Cond. No. | 222. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.95e-05 |
Time: | 03:32:49 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 2.3493 | 59.764 | 0.039 | 0.969 | -122.317 127.016 |
C(dose)[T.1] | 55.4828 | 8.952 | 6.197 | 0.000 | 36.808 74.157 |
expression | 8.1074 | 9.297 | 0.872 | 0.394 | -11.285 27.500 |
Omnibus: | 1.230 | Durbin-Watson: | 1.752 |
Prob(Omnibus): | 0.541 | Jarque-Bera (JB): | 0.872 |
Skew: | 0.098 | Prob(JB): | 0.647 |
Kurtosis: | 2.067 | Cond. No. | 89.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.034 |
Method: | Least Squares | F-statistic: | 0.2687 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.610 |
Time: | 03:32:49 | Log-Likelihood: | -112.96 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.1687 | 93.745 | 1.367 | 0.186 | -66.785 323.122 |
expression | -7.7275 | 14.908 | -0.518 | 0.610 | -38.730 23.275 |
Omnibus: | 2.633 | Durbin-Watson: | 2.451 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.335 |
Skew: | 0.221 | Prob(JB): | 0.513 |
Kurtosis: | 1.906 | Cond. No. | 84.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.040 | 0.846 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.310 |
Method: | Least Squares | F-statistic: | 3.092 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0717 |
Time: | 03:32:50 | Log-Likelihood: | -70.713 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 44.4583 | 158.554 | 0.280 | 0.784 | -304.516 393.433 |
C(dose)[T.1] | 129.1386 | 214.720 | 0.601 | 0.560 | -343.457 601.734 |
expression | 3.9904 | 27.467 | 0.145 | 0.887 | -56.463 64.444 |
expression:C(dose)[T.1] | -13.9814 | 37.354 | -0.374 | 0.715 | -96.198 68.235 |
Omnibus: | 2.481 | Durbin-Watson: | 0.814 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.841 |
Skew: | -0.810 | Prob(JB): | 0.398 |
Kurtosis: | 2.434 | Cond. No. | 211. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.921 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0275 |
Time: | 03:32:50 | Log-Likelihood: | -70.808 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.9713 | 103.881 | 0.847 | 0.414 | -138.366 314.309 |
C(dose)[T.1] | 49.0038 | 15.744 | 3.113 | 0.009 | 14.701 83.306 |
expression | -3.5687 | 17.936 | -0.199 | 0.846 | -42.648 35.510 |
Omnibus: | 2.612 | Durbin-Watson: | 0.728 |
Prob(Omnibus): | 0.271 | Jarque-Bera (JB): | 1.884 |
Skew: | -0.833 | Prob(JB): | 0.390 |
Kurtosis: | 2.512 | Cond. No. | 78.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.069 |
Method: | Least Squares | F-statistic: | 0.09171 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.767 |
Time: | 03:32:50 | Log-Likelihood: | -75.247 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.7742 | 132.824 | 1.007 | 0.332 | -153.175 420.723 |
expression | -7.0026 | 23.123 | -0.303 | 0.767 | -56.957 42.952 |
Omnibus: | 0.676 | Durbin-Watson: | 1.589 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.606 |
Skew: | 0.030 | Prob(JB): | 0.739 |
Kurtosis: | 2.017 | Cond. No. | 77.6 |