AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.221 0.644 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.667
Method: Least Squares F-statistic: 15.71
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.22e-05
Time: 03:47:52 Log-Likelihood: -98.762
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.4795 76.956 1.734 0.099 -27.592 294.551
C(dose)[T.1] -165.2965 110.182 -1.500 0.150 -395.911 65.318
expression -12.0564 11.673 -1.033 0.315 -36.488 12.375
expression:C(dose)[T.1] 33.1586 16.674 1.989 0.061 -1.741 68.058
Omnibus: 1.278 Durbin-Watson: 1.813
Prob(Omnibus): 0.528 Jarque-Bera (JB): 1.177
Skew: 0.454 Prob(JB): 0.555
Kurtosis: 2.365 Cond. No. 236.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.81
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.54e-05
Time: 03:47:52 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.6308 59.024 0.451 0.657 -96.490 149.752
C(dose)[T.1] 53.2150 8.726 6.099 0.000 35.013 71.417
expression 4.1943 8.930 0.470 0.644 -14.433 22.822
Omnibus: 0.608 Durbin-Watson: 1.934
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.643
Skew: 0.118 Prob(JB): 0.725
Kurtosis: 2.215 Cond. No. 91.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:47:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.1560
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.697
Time: 03:47:53 Log-Likelihood: -113.02
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.3854 97.325 0.425 0.675 -161.012 243.783
expression 5.8176 14.731 0.395 0.697 -24.816 36.451
Omnibus: 3.161 Durbin-Watson: 2.568
Prob(Omnibus): 0.206 Jarque-Bera (JB): 1.428
Skew: 0.206 Prob(JB): 0.490
Kurtosis: 1.851 Cond. No. 91.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.101 0.756 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.335
Method: Least Squares F-statistic: 3.351
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0592
Time: 03:47:53 Log-Likelihood: -70.432
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.0779 107.224 0.010 0.992 -234.920 237.076
C(dose)[T.1] 199.9777 210.904 0.948 0.363 -264.219 664.175
expression 11.1669 17.938 0.623 0.546 -28.315 50.649
expression:C(dose)[T.1] -25.8523 36.277 -0.713 0.491 -105.698 53.993
Omnibus: 2.063 Durbin-Watson: 0.985
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.176
Skew: -0.682 Prob(JB): 0.555
Kurtosis: 2.848 Cond. No. 191.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 4.976
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0267
Time: 03:47:53 Log-Likelihood: -70.770
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.6366 91.442 0.423 0.680 -160.599 237.872
C(dose)[T.1] 50.1291 15.947 3.143 0.008 15.383 84.875
expression 4.8457 15.269 0.317 0.756 -28.422 38.113
Omnibus: 2.570 Durbin-Watson: 0.811
Prob(Omnibus): 0.277 Jarque-Bera (JB): 1.842
Skew: -0.825 Prob(JB): 0.398
Kurtosis: 2.527 Cond. No. 70.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:47:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04219
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.840
Time: 03:47:53 Log-Likelihood: -75.276
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.0193 114.139 1.025 0.324 -129.562 363.601
expression -3.9994 19.470 -0.205 0.840 -46.062 38.063
Omnibus: 0.290 Durbin-Watson: 1.632
Prob(Omnibus): 0.865 Jarque-Bera (JB): 0.446
Skew: -0.008 Prob(JB): 0.800
Kurtosis: 2.156 Cond. No. 67.9