AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.426 | 0.521 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.44e-05 |
Time: | 04:17:25 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 138.6042 | 251.275 | 0.552 | 0.588 | -387.320 664.528 |
C(dose)[T.1] | 509.8241 | 672.275 | 0.758 | 0.458 | -897.263 1916.911 |
expression | -7.5342 | 22.425 | -0.336 | 0.741 | -54.471 39.402 |
expression:C(dose)[T.1] | -39.1661 | 58.319 | -0.672 | 0.510 | -161.229 82.897 |
Omnibus: | 1.723 | Durbin-Watson: | 1.949 |
Prob(Omnibus): | 0.423 | Jarque-Bera (JB): | 1.147 |
Skew: | 0.259 | Prob(JB): | 0.564 |
Kurtosis: | 2.037 | Cond. No. | 2.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.30e-05 |
Time: | 04:17:25 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 203.4750 | 228.761 | 0.889 | 0.384 | -273.712 680.662 |
C(dose)[T.1] | 58.4046 | 11.644 | 5.016 | 0.000 | 34.116 82.693 |
expression | -13.3253 | 20.415 | -0.653 | 0.521 | -55.910 29.260 |
Omnibus: | 1.217 | Durbin-Watson: | 1.980 |
Prob(Omnibus): | 0.544 | Jarque-Bera (JB): | 0.857 |
Skew: | 0.066 | Prob(JB): | 0.652 |
Kurtosis: | 2.064 | Cond. No. | 607. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:17:25 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.224 |
Model: | OLS | Adj. R-squared: | 0.187 |
Method: | Least Squares | F-statistic: | 6.066 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0225 |
Time: | 04:17:25 | Log-Likelihood: | -110.19 |
No. Observations: | 23 | AIC: | 224.4 |
Df Residuals: | 21 | BIC: | 226.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -545.8111 | 254.067 | -2.148 | 0.044 | -1074.172 -17.450 |
expression | 54.9501 | 22.312 | 2.463 | 0.023 | 8.550 101.350 |
Omnibus: | 2.697 | Durbin-Watson: | 2.139 |
Prob(Omnibus): | 0.260 | Jarque-Bera (JB): | 1.230 |
Skew: | 0.064 | Prob(JB): | 0.541 |
Kurtosis: | 1.874 | Cond. No. | 459. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.482 | 0.501 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.540 |
Model: | OLS | Adj. R-squared: | 0.415 |
Method: | Least Squares | F-statistic: | 4.312 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0306 |
Time: | 04:17:25 | Log-Likelihood: | -69.469 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 11 | BIC: | 149.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -263.6308 | 581.629 | -0.453 | 0.659 | -1543.787 1016.525 |
C(dose)[T.1] | 1023.8656 | 748.284 | 1.368 | 0.199 | -623.097 2670.829 |
expression | 35.6313 | 62.588 | 0.569 | 0.581 | -102.125 173.387 |
expression:C(dose)[T.1] | -103.9527 | 80.085 | -1.298 | 0.221 | -280.219 72.314 |
Omnibus: | 0.740 | Durbin-Watson: | 1.200 |
Prob(Omnibus): | 0.691 | Jarque-Bera (JB): | 0.571 |
Skew: | -0.424 | Prob(JB): | 0.752 |
Kurtosis: | 2.559 | Cond. No. | 1.32e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.322 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 04:17:26 | Log-Likelihood: | -70.538 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 326.2876 | 373.181 | 0.874 | 0.399 | -486.803 1139.379 |
C(dose)[T.1] | 52.7920 | 16.280 | 3.243 | 0.007 | 17.322 88.262 |
expression | -27.8605 | 40.146 | -0.694 | 0.501 | -115.332 59.611 |
Omnibus: | 2.909 | Durbin-Watson: | 1.008 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.949 |
Skew: | -0.869 | Prob(JB): | 0.377 |
Kurtosis: | 2.685 | Cond. No. | 460. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:17:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.07344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.791 |
Time: | 04:17:26 | Log-Likelihood: | -75.258 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -33.3876 | 468.934 | -0.071 | 0.944 | -1046.458 979.683 |
expression | 13.5740 | 50.088 | 0.271 | 0.791 | -94.634 121.782 |
Omnibus: | 0.945 | Durbin-Watson: | 1.514 |
Prob(Omnibus): | 0.623 | Jarque-Bera (JB): | 0.708 |
Skew: | 0.117 | Prob(JB): | 0.702 |
Kurtosis: | 1.962 | Cond. No. | 438. |