AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.864 | 0.364 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.699 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 14.70 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.44e-05 |
Time: | 04:45:49 | Log-Likelihood: | -99.299 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 113.2478 | 37.583 | 3.013 | 0.007 | 34.586 191.910 |
C(dose)[T.1] | -54.4028 | 72.574 | -0.750 | 0.463 | -206.302 97.496 |
expression | -25.0774 | 15.775 | -1.590 | 0.128 | -58.094 7.939 |
expression:C(dose)[T.1] | 45.7931 | 30.655 | 1.494 | 0.152 | -18.368 109.955 |
Omnibus: | 0.764 | Durbin-Watson: | 2.061 |
Prob(Omnibus): | 0.682 | Jarque-Bera (JB): | 0.690 |
Skew: | -0.009 | Prob(JB): | 0.708 |
Kurtosis: | 2.152 | Cond. No. | 57.4 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 19.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.86e-05 |
Time: | 04:45:49 | Log-Likelihood: | -100.58 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.6992 | 33.342 | 2.540 | 0.019 | 15.148 154.250 |
C(dose)[T.1] | 53.2932 | 8.587 | 6.207 | 0.000 | 35.382 71.204 |
expression | -12.9512 | 13.936 | -0.929 | 0.364 | -42.021 16.119 |
Omnibus: | 0.001 | Durbin-Watson: | 2.016 |
Prob(Omnibus): | 1.000 | Jarque-Bera (JB): | 0.162 |
Skew: | 0.007 | Prob(JB): | 0.922 |
Kurtosis: | 2.589 | Cond. No. | 22.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:45:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.016 |
Model: | OLS | Adj. R-squared: | -0.031 |
Method: | Least Squares | F-statistic: | 0.3331 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.570 |
Time: | 04:45:49 | Log-Likelihood: | -112.92 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 111.3067 | 55.198 | 2.016 | 0.057 | -3.485 226.098 |
expression | -13.4271 | 23.264 | -0.577 | 0.570 | -61.807 34.953 |
Omnibus: | 3.504 | Durbin-Watson: | 2.638 |
Prob(Omnibus): | 0.173 | Jarque-Bera (JB): | 1.824 |
Skew: | 0.402 | Prob(JB): | 0.402 |
Kurtosis: | 1.878 | Cond. No. | 21.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.919 | 0.357 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.538 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 4.277 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0313 |
Time: | 04:45:49 | Log-Likelihood: | -69.502 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.8623 | 47.329 | 2.723 | 0.020 | 24.691 233.033 |
C(dose)[T.1] | -67.1279 | 104.013 | -0.645 | 0.532 | -296.060 161.804 |
expression | -20.3203 | 15.227 | -1.334 | 0.209 | -53.835 13.195 |
expression:C(dose)[T.1] | 40.2362 | 36.706 | 1.096 | 0.296 | -40.553 121.025 |
Omnibus: | 3.879 | Durbin-Watson: | 0.808 |
Prob(Omnibus): | 0.144 | Jarque-Bera (JB): | 1.930 |
Skew: | -0.861 | Prob(JB): | 0.381 |
Kurtosis: | 3.351 | Cond. No. | 52.8 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.488 |
Model: | OLS | Adj. R-squared: | 0.403 |
Method: | Least Squares | F-statistic: | 5.719 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0180 |
Time: | 04:45:49 | Log-Likelihood: | -70.279 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.9272 | 43.667 | 2.472 | 0.029 | 12.785 203.070 |
C(dose)[T.1] | 45.6177 | 15.622 | 2.920 | 0.013 | 11.581 79.655 |
expression | -13.3956 | 13.971 | -0.959 | 0.357 | -43.836 17.045 |
Omnibus: | 1.870 | Durbin-Watson: | 0.925 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 1.379 |
Skew: | -0.696 | Prob(JB): | 0.502 |
Kurtosis: | 2.481 | Cond. No. | 19.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:45:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.124 |
Model: | OLS | Adj. R-squared: | 0.057 |
Method: | Least Squares | F-statistic: | 1.843 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.198 |
Time: | 04:45:49 | Log-Likelihood: | -74.306 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 160.3376 | 50.023 | 3.205 | 0.007 | 52.270 268.405 |
expression | -23.1433 | 17.048 | -1.358 | 0.198 | -59.972 13.686 |
Omnibus: | 4.039 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.133 | Jarque-Bera (JB): | 1.615 |
Skew: | 0.421 | Prob(JB): | 0.446 |
Kurtosis: | 1.631 | Cond. No. | 17.2 |