AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.007 0.932 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 13.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.21e-05
Time: 04:57:18 Log-Likelihood: -100.03
No. Observations: 23 AIC: 208.1
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.2344 50.696 2.056 0.054 -1.873 210.341
C(dose)[T.1] -32.8815 65.252 -0.504 0.620 -169.455 103.692
expression -15.2059 15.303 -0.994 0.333 -47.235 16.823
expression:C(dose)[T.1] 25.9047 19.450 1.332 0.199 -14.804 66.613
Omnibus: 0.348 Durbin-Watson: 1.763
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.505
Skew: -0.190 Prob(JB): 0.777
Kurtosis: 2.382 Cond. No. 76.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-05
Time: 04:57:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.4764 32.244 1.596 0.126 -15.784 118.737
C(dose)[T.1] 53.2599 8.814 6.043 0.000 34.875 71.645
expression 0.8304 9.626 0.086 0.932 -19.249 20.910
Omnibus: 0.307 Durbin-Watson: 1.881
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.475
Skew: 0.048 Prob(JB): 0.788
Kurtosis: 2.302 Cond. No. 27.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:57:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.039
Method: Least Squares F-statistic: 0.1839
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.672
Time: 04:57:19 Log-Likelihood: -113.00
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.2557 52.873 1.083 0.291 -52.701 167.212
expression 6.7364 15.710 0.429 0.672 -25.934 39.407
Omnibus: 4.207 Durbin-Watson: 2.454
Prob(Omnibus): 0.122 Jarque-Bera (JB): 1.613
Skew: 0.205 Prob(JB): 0.446
Kurtosis: 1.769 Cond. No. 26.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.127 0.728 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.776
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0438
Time: 04:57:19 Log-Likelihood: -69.990
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.3234 101.269 1.149 0.275 -106.569 339.216
C(dose)[T.1] -107.9913 145.968 -0.740 0.475 -429.265 213.283
expression -13.1320 27.027 -0.486 0.637 -72.619 46.355
expression:C(dose)[T.1] 42.6918 39.313 1.086 0.301 -43.835 129.218
Omnibus: 2.937 Durbin-Watson: 0.827
Prob(Omnibus): 0.230 Jarque-Bera (JB): 1.726
Skew: -0.830 Prob(JB): 0.422
Kurtosis: 2.910 Cond. No. 98.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.000
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0263
Time: 04:57:19 Log-Likelihood: -70.754
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.1929 74.504 0.553 0.590 -121.137 203.523
C(dose)[T.1] 49.6178 15.702 3.160 0.008 15.407 83.829
expression 7.0463 19.773 0.356 0.728 -36.035 50.128
Omnibus: 3.250 Durbin-Watson: 0.786
Prob(Omnibus): 0.197 Jarque-Bera (JB): 2.189
Skew: -0.924 Prob(JB): 0.335
Kurtosis: 2.699 Cond. No. 38.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:57:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.008335
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.929
Time: 04:57:19 Log-Likelihood: -75.295
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.0255 95.196 0.893 0.388 -120.633 290.684
expression 2.3409 25.641 0.091 0.929 -53.053 57.735
Omnibus: 0.536 Durbin-Watson: 1.624
Prob(Omnibus): 0.765 Jarque-Bera (JB): 0.554
Skew: 0.013 Prob(JB): 0.758
Kurtosis: 2.059 Cond. No. 37.3