AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  46.839  |   0.000  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.896 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.880 | 
  | Method: |              Least Squares |     F-statistic:        |     54.71 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.54e-09 | 
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -87.049 | 
  | No. Observations: |           23 |         AIC:                |     182.1 | 
  | Df Residuals: |               19 |         BIC:                |     186.6 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  262.3138 |     46.234 |      5.674 |   0.000 |    165.546   359.082 | 
  | C(dose)[T.1] |                91.8772 |     67.775 |      1.356 |   0.191 |    -49.978   233.732 | 
  | expression |                 -77.8911 |     17.258 |     -4.513 |   0.000 |   -114.013   -41.769 | 
  | expression:C(dose)[T.1] |    -11.9666 |     24.943 |     -0.480 |   0.637 |    -64.173    40.240 | 
  | Omnibus: |         0.319 |    Durbin-Watson:      |     2.641 | 
  | Prob(Omnibus): |   0.853 |    Jarque-Bera (JB):   |     0.487 | 
  | Skew: |            0.119 |    Prob(JB):           |     0.784 | 
  | Kurtosis: |        2.328 |    Cond. No.           |      110. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.895 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.884 | 
  | Method: |              Least Squares |     F-statistic:        |     85.23 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.63e-10 | 
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -87.187 | 
  | No. Observations: |           23 |         AIC:                |     180.4 | 
  | Df Residuals: |               20 |         BIC:                |     183.8 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       277.6196 |     32.812 |      8.461 |   0.000 |    209.175   346.064 | 
  | C(dose)[T.1] |     59.4494 |      4.880 |     12.183 |   0.000 |     49.271    69.628 | 
  | expression |      -83.6199 |     12.218 |     -6.844 |   0.000 |   -109.106   -58.133 | 
  | Omnibus: |         0.071 |    Durbin-Watson:      |     2.556 | 
  | Prob(Omnibus): |   0.965 |    Jarque-Bera (JB):   |     0.295 | 
  | Skew: |            0.018 |    Prob(JB):           |     0.863 | 
  | Kurtosis: |        2.446 |    Cond. No.           |      42.8 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.116 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.074 | 
  | Method: |              Least Squares |     F-statistic:        |     2.747 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.112 |  
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -111.69 | 
  | No. Observations: |           23 |         AIC:                |     227.4 | 
  | Df Residuals: |               21 |         BIC:                |     229.7 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     232.3106 |     92.325 |      2.516 |   0.020 |     40.309   424.312 | 
  | expression |    -56.3759 |     34.018 |     -1.657 |   0.112 |   -127.119    14.367 | 
  | Omnibus: |         9.404 |    Durbin-Watson:      |     2.736 | 
  | Prob(Omnibus): |   0.009 |    Jarque-Bera (JB):   |     2.357 | 
  | Skew: |            0.284 |    Prob(JB):           |     0.308 | 
  | Kurtosis: |        1.538 |    Cond. No.           |      41.9 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  3.451  |   0.088  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.592 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.480 | 
  | Method: |              Least Squares |     F-statistic:        |     5.313 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0165 |  
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -68.583 | 
  | No. Observations: |           15 |         AIC:                |     145.2 | 
  | Df Residuals: |               11 |         BIC:                |     148.0 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  -23.8526 |    164.124 |     -0.145 |   0.887 |   -385.087   337.382 | 
  | C(dose)[T.1] |               -97.3925 |    207.412 |     -0.470 |   0.648 |   -553.904   359.119 | 
  | expression |                  33.7898 |     60.634 |      0.557 |   0.588 |    -99.664   167.244 | 
  | expression:C(dose)[T.1] |     56.4154 |     77.304 |      0.730 |   0.481 |   -113.730   226.561 | 
  | Omnibus: |         0.348 |    Durbin-Watson:      |     0.524 | 
  | Prob(Omnibus): |   0.840 |    Jarque-Bera (JB):   |     0.475 | 
  | Skew: |           -0.042 |    Prob(JB):           |     0.789 | 
  | Kurtosis: |        2.132 |    Cond. No.           |      125. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.572 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.501 | 
  | Method: |              Least Squares |     F-statistic:        |     8.015 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00616 | 
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -68.937 | 
  | No. Observations: |           15 |         AIC:                |     143.9 | 
  | Df Residuals: |               12 |         BIC:                |     146.0 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      -117.6123 |    100.122 |     -1.175 |   0.263 |   -335.759   100.534 | 
  | C(dose)[T.1] |     53.6113 |     14.073 |      3.809 |   0.002 |     22.949    84.274 | 
  | expression |       68.4971 |     36.872 |      1.858 |   0.088 |    -11.840   148.835 | 
  | Omnibus: |         1.928 |    Durbin-Watson:      |     0.730 | 
  | Prob(Omnibus): |   0.381 |    Jarque-Bera (JB):   |     0.987 | 
  | Skew: |           -0.187 |    Prob(JB):           |     0.611 | 
  | Kurtosis: |        1.800 |    Cond. No.           |      44.8 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.054 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.019 | 
  | Method: |              Least Squares |     F-statistic:        |    0.7443 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.404 |  
  | Time: |                  09:57:46 |        Log-Likelihood:     |   -74.882 | 
  | No. Observations: |           15 |         AIC:                |     153.8 | 
  | Df Residuals: |               13 |         BIC:                |     155.2 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     -25.7561 |    138.773 |     -0.186 |   0.856 |   -325.557   274.045 | 
  | expression |     44.7769 |     51.900 |      0.863 |   0.404 |    -67.346   156.900 | 
  | Omnibus: |         1.237 |    Durbin-Watson:      |     1.632 | 
  | Prob(Omnibus): |   0.539 |    Jarque-Bera (JB):   |     0.786 | 
  | Skew: |            0.103 |    Prob(JB):           |     0.675 | 
  | Kurtosis: |        1.897 |    Cond. No.           |      42.8 |