AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
46.839 0.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.896
Model: OLS Adj. R-squared: 0.880
Method: Least Squares F-statistic: 54.71
Date: Thu, 16 Jan 2025 Prob (F-statistic): 1.54e-09
Time: 03:53:15 Log-Likelihood: -87.049
No. Observations: 23 AIC: 182.1
Df Residuals: 19 BIC: 186.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 262.3138 46.234 5.674 0.000 165.546 359.082
C(dose)[T.1] 91.8772 67.775 1.356 0.191 -49.978 233.732
expression -77.8911 17.258 -4.513 0.000 -114.013 -41.769
expression:C(dose)[T.1] -11.9666 24.943 -0.480 0.637 -64.173 40.240
Omnibus: 0.319 Durbin-Watson: 2.641
Prob(Omnibus): 0.853 Jarque-Bera (JB): 0.487
Skew: 0.119 Prob(JB): 0.784
Kurtosis: 2.328 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.895
Model: OLS Adj. R-squared: 0.884
Method: Least Squares F-statistic: 85.23
Date: Thu, 16 Jan 2025 Prob (F-statistic): 1.63e-10
Time: 03:53:15 Log-Likelihood: -87.187
No. Observations: 23 AIC: 180.4
Df Residuals: 20 BIC: 183.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 277.6196 32.812 8.461 0.000 209.175 346.064
C(dose)[T.1] 59.4494 4.880 12.183 0.000 49.271 69.628
expression -83.6199 12.218 -6.844 0.000 -109.106 -58.133
Omnibus: 0.071 Durbin-Watson: 2.556
Prob(Omnibus): 0.965 Jarque-Bera (JB): 0.295
Skew: 0.018 Prob(JB): 0.863
Kurtosis: 2.446 Cond. No. 42.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 16 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 03:53:15 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.116
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 2.747
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.112
Time: 03:53:15 Log-Likelihood: -111.69
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 232.3106 92.325 2.516 0.020 40.309 424.312
expression -56.3759 34.018 -1.657 0.112 -127.119 14.367
Omnibus: 9.404 Durbin-Watson: 2.736
Prob(Omnibus): 0.009 Jarque-Bera (JB): 2.357
Skew: 0.284 Prob(JB): 0.308
Kurtosis: 1.538 Cond. No. 41.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.451 0.088 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.592
Model: OLS Adj. R-squared: 0.480
Method: Least Squares F-statistic: 5.313
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.0165
Time: 03:53:15 Log-Likelihood: -68.583
No. Observations: 15 AIC: 145.2
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.8526 164.124 -0.145 0.887 -385.087 337.382
C(dose)[T.1] -97.3925 207.412 -0.470 0.648 -553.904 359.119
expression 33.7898 60.634 0.557 0.588 -99.664 167.244
expression:C(dose)[T.1] 56.4154 77.304 0.730 0.481 -113.730 226.561
Omnibus: 0.348 Durbin-Watson: 0.524
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.475
Skew: -0.042 Prob(JB): 0.789
Kurtosis: 2.132 Cond. No. 125.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.572
Model: OLS Adj. R-squared: 0.501
Method: Least Squares F-statistic: 8.015
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.00616
Time: 03:53:15 Log-Likelihood: -68.937
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -117.6123 100.122 -1.175 0.263 -335.759 100.534
C(dose)[T.1] 53.6113 14.073 3.809 0.002 22.949 84.274
expression 68.4971 36.872 1.858 0.088 -11.840 148.835
Omnibus: 1.928 Durbin-Watson: 0.730
Prob(Omnibus): 0.381 Jarque-Bera (JB): 0.987
Skew: -0.187 Prob(JB): 0.611
Kurtosis: 1.800 Cond. No. 44.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.00629
Time: 03:53:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: -0.019
Method: Least Squares F-statistic: 0.7443
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.404
Time: 03:53:16 Log-Likelihood: -74.882
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.7561 138.773 -0.186 0.856 -325.557 274.045
expression 44.7769 51.900 0.863 0.404 -67.346 156.900
Omnibus: 1.237 Durbin-Watson: 1.632
Prob(Omnibus): 0.539 Jarque-Bera (JB): 0.786
Skew: 0.103 Prob(JB): 0.675
Kurtosis: 1.897 Cond. No. 42.8