AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.091 0.766 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.42
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.000100
Time: 03:59:16 Log-Likelihood: -100.62
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.0550 30.876 2.301 0.033 6.432 135.678
C(dose)[T.1] -20.6733 92.603 -0.223 0.826 -214.494 173.147
expression -6.6794 12.000 -0.557 0.584 -31.795 18.437
expression:C(dose)[T.1] 28.4183 35.220 0.807 0.430 -45.298 102.134
Omnibus: 0.275 Durbin-Watson: 1.738
Prob(Omnibus): 0.871 Jarque-Bera (JB): 0.456
Skew: 0.031 Prob(JB): 0.796
Kurtosis: 2.313 Cond. No. 71.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 16 Jan 2025 Prob (F-statistic): 2.71e-05
Time: 03:59:16 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.7343 28.848 2.175 0.042 2.559 122.909
C(dose)[T.1] 53.7001 8.832 6.080 0.000 35.277 72.123
expression -3.3804 11.183 -0.302 0.766 -26.708 19.947
Omnibus: 0.208 Durbin-Watson: 1.816
Prob(Omnibus): 0.901 Jarque-Bera (JB): 0.411
Skew: 0.027 Prob(JB): 0.814
Kurtosis: 2.347 Cond. No. 20.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 16 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 03:59:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1032
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.751
Time: 03:59:16 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.6278 47.511 1.360 0.188 -34.177 163.433
expression 5.8633 18.248 0.321 0.751 -32.086 43.813
Omnibus: 3.004 Durbin-Watson: 2.554
Prob(Omnibus): 0.223 Jarque-Bera (JB): 1.448
Skew: 0.248 Prob(JB): 0.485
Kurtosis: 1.875 Cond. No. 19.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
79.985 0.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.931
Model: OLS Adj. R-squared: 0.912
Method: Least Squares F-statistic: 49.18
Date: Thu, 16 Jan 2025 Prob (F-statistic): 1.16e-06
Time: 03:59:16 Log-Likelihood: -55.289
No. Observations: 15 AIC: 118.6
Df Residuals: 11 BIC: 121.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 170.1288 22.965 7.408 0.000 119.584 220.674
C(dose)[T.1] 45.2753 26.804 1.689 0.119 -13.721 104.271
expression -37.4864 8.237 -4.551 0.001 -55.616 -19.357
expression:C(dose)[T.1] 5.8691 9.263 0.634 0.539 -14.518 26.256
Omnibus: 0.523 Durbin-Watson: 1.854
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.563
Skew: -0.132 Prob(JB): 0.755
Kurtosis: 2.088 Cond. No. 47.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.928
Model: OLS Adj. R-squared: 0.916
Method: Least Squares F-statistic: 77.44
Date: Thu, 16 Jan 2025 Prob (F-statistic): 1.38e-07
Time: 03:59:16 Log-Likelihood: -55.558
No. Observations: 15 AIC: 117.1
Df Residuals: 12 BIC: 119.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 157.4137 10.884 14.462 0.000 133.698 181.129
C(dose)[T.1] 61.8269 5.858 10.555 0.000 49.064 74.590
expression -32.8453 3.673 -8.943 0.000 -40.847 -24.844
Omnibus: 1.000 Durbin-Watson: 2.009
Prob(Omnibus): 0.607 Jarque-Bera (JB): 0.707
Skew: -0.011 Prob(JB): 0.702
Kurtosis: 1.937 Cond. No. 13.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.00629
Time: 03:59:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.261
Model: OLS Adj. R-squared: 0.204
Method: Least Squares F-statistic: 4.580
Date: Thu, 16 Jan 2025 Prob (F-statistic): 0.0519
Time: 03:59:16 Log-Likelihood: -73.037
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.8679 33.497 4.862 0.000 90.502 235.234
expression -23.4998 10.981 -2.140 0.052 -47.224 0.224
Omnibus: 5.445 Durbin-Watson: 2.400
Prob(Omnibus): 0.066 Jarque-Bera (JB): 1.443
Skew: -0.046 Prob(JB): 0.486
Kurtosis: 1.483 Cond. No. 12.9