AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.761 0.393 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.54
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.42e-05
Time: 04:17:25 Log-Likelihood: -100.55
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -94.4372 166.426 -0.567 0.577 -442.770 253.895
C(dose)[T.1] 147.9023 260.839 0.567 0.577 -398.040 693.844
expression 18.8316 21.070 0.894 0.383 -25.269 62.932
expression:C(dose)[T.1] -12.2303 32.317 -0.378 0.709 -79.871 55.411
Omnibus: 0.802 Durbin-Watson: 2.026
Prob(Omnibus): 0.670 Jarque-Bera (JB): 0.718
Skew: -0.091 Prob(JB): 0.698
Kurtosis: 2.154 Cond. No. 608.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.95e-05
Time: 04:17:25 Log-Likelihood: -100.63
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -53.4016 123.519 -0.432 0.670 -311.058 204.255
C(dose)[T.1] 49.2622 9.794 5.030 0.000 28.833 69.692
expression 13.6329 15.630 0.872 0.393 -18.971 46.237
Omnibus: 0.367 Durbin-Watson: 2.018
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.511
Skew: -0.068 Prob(JB): 0.774
Kurtosis: 2.282 Cond. No. 235.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:17:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.234
Model: OLS Adj. R-squared: 0.198
Method: Least Squares F-statistic: 6.424
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0193
Time: 04:17:26 Log-Likelihood: -110.04
No. Observations: 23 AIC: 224.1
Df Residuals: 21 BIC: 226.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -331.2313 162.266 -2.041 0.054 -668.682 6.220
expression 51.1363 20.176 2.534 0.019 9.177 93.095
Omnibus: 0.475 Durbin-Watson: 2.571
Prob(Omnibus): 0.789 Jarque-Bera (JB): 0.558
Skew: 0.282 Prob(JB): 0.756
Kurtosis: 2.487 Cond. No. 210.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.013 0.911 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.545
Model: OLS Adj. R-squared: 0.421
Method: Least Squares F-statistic: 4.395
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0290
Time: 04:17:26 Log-Likelihood: -69.391
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.7201 131.287 -0.234 0.819 -319.680 258.240
C(dose)[T.1] 402.9769 232.962 1.730 0.112 -109.769 915.722
expression 12.5907 16.784 0.750 0.469 -24.350 49.531
expression:C(dose)[T.1] -45.7588 30.057 -1.522 0.156 -111.914 20.396
Omnibus: 1.095 Durbin-Watson: 1.069
Prob(Omnibus): 0.578 Jarque-Bera (JB): 0.718
Skew: -0.507 Prob(JB): 0.699
Kurtosis: 2.655 Cond. No. 303.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.897
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 04:17:26 Log-Likelihood: -70.825
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.5013 114.916 0.701 0.497 -169.879 330.881
C(dose)[T.1] 49.0486 15.784 3.107 0.009 14.658 83.439
expression -1.6770 14.668 -0.114 0.911 -33.635 30.281
Omnibus: 2.607 Durbin-Watson: 0.782
Prob(Omnibus): 0.272 Jarque-Bera (JB): 1.796
Skew: -0.825 Prob(JB): 0.407
Kurtosis: 2.614 Cond. No. 116.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:17:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.070
Method: Least Squares F-statistic: 0.08223
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.779
Time: 04:17:26 Log-Likelihood: -75.253
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.5888 146.545 0.925 0.372 -181.002 452.180
expression -5.4105 18.868 -0.287 0.779 -46.172 35.351
Omnibus: 0.368 Durbin-Watson: 1.548
Prob(Omnibus): 0.832 Jarque-Bera (JB): 0.484
Skew: -0.022 Prob(JB): 0.785
Kurtosis: 2.121 Cond. No. 114.