AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.953 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 13.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.20e-05 |
Time: | 03:41:56 | Log-Likelihood: | -99.811 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -19.0480 | 121.887 | -0.156 | 0.877 | -274.161 236.065 |
C(dose)[T.1] | 540.0596 | 329.690 | 1.638 | 0.118 | -149.990 1230.110 |
expression | 9.7337 | 16.176 | 0.602 | 0.554 | -24.124 43.591 |
expression:C(dose)[T.1] | -64.8058 | 43.884 | -1.477 | 0.156 | -156.657 27.045 |
Omnibus: | 1.843 | Durbin-Watson: | 1.929 |
Prob(Omnibus): | 0.398 | Jarque-Bera (JB): | 1.197 |
Skew: | 0.272 | Prob(JB): | 0.550 |
Kurtosis: | 2.024 | Cond. No. | 678. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 03:41:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.2241 | 116.622 | 0.405 | 0.690 | -196.046 290.494 |
C(dose)[T.1] | 53.3541 | 8.774 | 6.081 | 0.000 | 35.053 71.656 |
expression | 0.9280 | 15.475 | 0.060 | 0.953 | -31.352 33.208 |
Omnibus: | 0.344 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.842 | Jarque-Bera (JB): | 0.497 |
Skew: | 0.053 | Prob(JB): | 0.780 |
Kurtosis: | 2.287 | Cond. No. | 204. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.006889 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.935 |
Time: | 03:41:56 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.6132 | 191.656 | 0.499 | 0.623 | -302.958 494.184 |
expression | -2.1146 | 25.477 | -0.083 | 0.935 | -55.098 50.868 |
Omnibus: | 3.312 | Durbin-Watson: | 2.462 |
Prob(Omnibus): | 0.191 | Jarque-Bera (JB): | 1.556 |
Skew: | 0.280 | Prob(JB): | 0.459 |
Kurtosis: | 1.855 | Cond. No. | 203. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.962 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.519 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 3.955 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0388 |
Time: | 03:41:56 | Log-Likelihood: | -69.812 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -331.1119 | 410.465 | -0.807 | 0.437 | -1234.539 572.315 |
C(dose)[T.1] | 708.8546 | 521.274 | 1.360 | 0.201 | -438.462 1856.171 |
expression | 53.3345 | 54.910 | 0.971 | 0.352 | -67.521 174.190 |
expression:C(dose)[T.1] | -87.8068 | 69.373 | -1.266 | 0.232 | -240.496 64.882 |
Omnibus: | 4.874 | Durbin-Watson: | 1.203 |
Prob(Omnibus): | 0.087 | Jarque-Bera (JB): | 2.500 |
Skew: | -0.964 | Prob(JB): | 0.287 |
Kurtosis: | 3.530 | Cond. No. | 734. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.887 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:41:56 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.9533 | 257.232 | 0.311 | 0.761 | -480.508 640.415 |
C(dose)[T.1] | 49.3678 | 16.126 | 3.061 | 0.010 | 14.233 84.503 |
expression | -1.6761 | 34.390 | -0.049 | 0.962 | -76.605 73.252 |
Omnibus: | 2.704 | Durbin-Watson: | 0.808 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.844 |
Skew: | -0.840 | Prob(JB): | 0.398 |
Kurtosis: | 2.637 | Cond. No. | 252. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:56 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.057 |
Method: | Least Squares | F-statistic: | 0.2444 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.629 |
Time: | 03:41:56 | Log-Likelihood: | -75.160 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -66.4560 | 324.071 | -0.205 | 0.841 | -766.568 633.656 |
expression | 21.2731 | 43.034 | 0.494 | 0.629 | -71.696 114.242 |
Omnibus: | 0.978 | Durbin-Watson: | 1.584 |
Prob(Omnibus): | 0.613 | Jarque-Bera (JB): | 0.733 |
Skew: | 0.159 | Prob(JB): | 0.693 |
Kurtosis: | 1.965 | Cond. No. | 247. |