AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.270 0.609 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.75e-05
Time: 03:39:30 Log-Likelihood: -100.46
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 19.0008 125.614 0.151 0.881 -243.912 281.913
C(dose)[T.1] 207.3715 175.131 1.184 0.251 -159.181 573.924
expression 4.4560 15.880 0.281 0.782 -28.780 37.692
expression:C(dose)[T.1] -19.0809 21.844 -0.874 0.393 -64.800 26.638
Omnibus: 1.285 Durbin-Watson: 1.761
Prob(Omnibus): 0.526 Jarque-Bera (JB): 0.979
Skew: 0.233 Prob(JB): 0.613
Kurtosis: 2.103 Cond. No. 428.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.48e-05
Time: 03:39:30 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.6763 85.854 1.149 0.264 -80.413 277.765
C(dose)[T.1] 54.5964 9.043 6.038 0.000 35.734 73.459
expression -5.6280 10.839 -0.519 0.609 -28.238 16.982
Omnibus: 0.713 Durbin-Watson: 1.917
Prob(Omnibus): 0.700 Jarque-Bera (JB): 0.683
Skew: 0.098 Prob(JB): 0.711
Kurtosis: 2.178 Cond. No. 161.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:39:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.024
Method: Least Squares F-statistic: 0.4851
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.494
Time: 03:39:30 Log-Likelihood: -112.84
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.7798 137.291 -0.115 0.910 -301.293 269.734
expression 11.9249 17.121 0.697 0.494 -23.680 47.529
Omnibus: 2.108 Durbin-Watson: 2.383
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.414
Skew: 0.368 Prob(JB): 0.493
Kurtosis: 2.033 Cond. No. 157.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.106 0.750 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.613
Model: OLS Adj. R-squared: 0.508
Method: Least Squares F-statistic: 5.812
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0125
Time: 03:39:30 Log-Likelihood: -68.177
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -32.9868 96.196 -0.343 0.738 -244.712 178.738
C(dose)[T.1] 369.0777 151.081 2.443 0.033 36.552 701.604
expression 14.3003 13.624 1.050 0.316 -15.686 44.287
expression:C(dose)[T.1] -46.1741 21.680 -2.130 0.057 -93.891 1.543
Omnibus: 0.044 Durbin-Watson: 1.218
Prob(Omnibus): 0.978 Jarque-Bera (JB): 0.193
Skew: -0.103 Prob(JB): 0.908
Kurtosis: 2.483 Cond. No. 199.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.363
Method: Least Squares F-statistic: 4.981
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0266
Time: 03:39:30 Log-Likelihood: -70.767
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.0584 85.445 1.113 0.288 -91.110 281.227
C(dose)[T.1] 48.6595 15.756 3.088 0.009 14.329 82.990
expression -3.9348 12.059 -0.326 0.750 -30.208 22.339
Omnibus: 2.189 Durbin-Watson: 0.789
Prob(Omnibus): 0.335 Jarque-Bera (JB): 1.624
Skew: -0.757 Prob(JB): 0.444
Kurtosis: 2.449 Cond. No. 78.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:39:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.056
Method: Least Squares F-statistic: 0.2569
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.621
Time: 03:39:30 Log-Likelihood: -75.153
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 148.0377 107.739 1.374 0.193 -84.718 380.794
expression -7.8241 15.436 -0.507 0.621 -41.172 25.524
Omnibus: 0.125 Durbin-Watson: 1.530
Prob(Omnibus): 0.939 Jarque-Bera (JB): 0.337
Skew: -0.103 Prob(JB): 0.845
Kurtosis: 2.295 Cond. No. 76.3