AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.048 | 0.829 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000102 |
Time: | 05:23:37 | Log-Likelihood: | -100.65 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.1922 | 87.361 | 0.288 | 0.776 | -157.657 208.041 |
C(dose)[T.1] | 174.9320 | 149.699 | 1.169 | 0.257 | -138.392 488.256 |
expression | 5.4329 | 16.317 | 0.333 | 0.743 | -28.719 39.585 |
expression:C(dose)[T.1] | -20.9673 | 26.100 | -0.803 | 0.432 | -75.594 33.660 |
Omnibus: | 0.364 | Durbin-Watson: | 2.029 |
Prob(Omnibus): | 0.834 | Jarque-Bera (JB): | 0.516 |
Skew: | 0.123 | Prob(JB): | 0.773 |
Kurtosis: | 2.309 | Cond. No. | 245. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 05:23:37 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.9622 | 67.682 | 1.019 | 0.320 | -72.219 210.144 |
C(dose)[T.1] | 55.0466 | 11.736 | 4.690 | 0.000 | 30.566 79.527 |
expression | -2.7625 | 12.622 | -0.219 | 0.829 | -29.091 23.566 |
Omnibus: | 0.523 | Durbin-Watson: | 1.875 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.594 |
Skew: | 0.077 | Prob(JB): | 0.743 |
Kurtosis: | 2.228 | Cond. No. | 91.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:23:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.265 |
Model: | OLS | Adj. R-squared: | 0.230 |
Method: | Least Squares | F-statistic: | 7.562 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0120 |
Time: | 05:23:37 | Log-Likelihood: | -109.57 |
No. Observations: | 23 | AIC: | 223.1 |
Df Residuals: | 21 | BIC: | 225.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -126.7998 | 75.352 | -1.683 | 0.107 | -283.503 29.903 |
expression | 36.6376 | 13.323 | 2.750 | 0.012 | 8.931 64.344 |
Omnibus: | 1.489 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.475 | Jarque-Bera (JB): | 1.064 |
Skew: | 0.250 | Prob(JB): | 0.587 |
Kurtosis: | 2.072 | Cond. No. | 71.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.242 | 0.631 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.483 |
Model: | OLS | Adj. R-squared: | 0.342 |
Method: | Least Squares | F-statistic: | 3.420 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0563 |
Time: | 05:23:37 | Log-Likelihood: | -70.358 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.6550 | 94.974 | 0.618 | 0.549 | -150.380 267.690 |
C(dose)[T.1] | 151.2057 | 146.154 | 1.035 | 0.323 | -170.477 472.889 |
expression | 1.5228 | 16.360 | 0.093 | 0.928 | -34.485 37.530 |
expression:C(dose)[T.1] | -17.4615 | 24.997 | -0.699 | 0.499 | -72.479 37.556 |
Omnibus: | 1.597 | Durbin-Watson: | 0.956 |
Prob(Omnibus): | 0.450 | Jarque-Bera (JB): | 1.260 |
Skew: | -0.633 | Prob(JB): | 0.532 |
Kurtosis: | 2.358 | Cond. No. | 142. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.370 |
Method: | Least Squares | F-statistic: | 5.105 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0249 |
Time: | 05:23:37 | Log-Likelihood: | -70.683 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.7483 | 70.653 | 1.440 | 0.175 | -52.192 255.689 |
C(dose)[T.1] | 49.7203 | 15.619 | 3.183 | 0.008 | 15.688 83.752 |
expression | -5.9566 | 12.103 | -0.492 | 0.631 | -32.326 20.413 |
Omnibus: | 2.084 | Durbin-Watson: | 0.803 |
Prob(Omnibus): | 0.353 | Jarque-Bera (JB): | 1.550 |
Skew: | -0.738 | Prob(JB): | 0.461 |
Kurtosis: | 2.449 | Cond. No. | 54.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:23:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.04470 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.836 |
Time: | 05:23:37 | Log-Likelihood: | -75.274 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 113.0153 | 92.074 | 1.227 | 0.241 | -85.897 311.928 |
expression | -3.3311 | 15.755 | -0.211 | 0.836 | -37.367 30.705 |
Omnibus: | 0.494 | Durbin-Watson: | 1.620 |
Prob(Omnibus): | 0.781 | Jarque-Bera (JB): | 0.539 |
Skew: | 0.045 | Prob(JB): | 0.764 |
Kurtosis: | 2.076 | Cond. No. | 54.6 |