AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.150 | 0.702 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.653 | 
  | Model: | OLS | Adj. R-squared: | 0.598 | 
  | Method: | Least Squares | F-statistic: | 11.91 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000129 | 
  | Time: | 00:18:56 | Log-Likelihood: | -100.94 | 
  | No. Observations: | 23 | AIC: | 209.9 | 
  | Df Residuals: | 19 | BIC: | 214.4 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -34.4892 | 194.378 | -0.177 | 0.861 | -441.326   372.348 | 
  | C(dose)[T.1] | 141.1951 | 360.012 | 0.392 | 0.699 | -612.319   894.710 | 
  | expression | 10.2063 | 22.355 | 0.457 | 0.653 | -36.584    56.997 | 
  | expression:C(dose)[T.1] | -10.1158 | 39.587 | -0.256 | 0.801 | -92.973    72.742 | 
  | Omnibus: | 0.174 | Durbin-Watson: | 1.850 | 
  | Prob(Omnibus): | 0.917 | Jarque-Bera (JB): | 0.379 | 
  | Skew: | 0.104 | Prob(JB): | 0.827 | 
  | Kurtosis: | 2.406 | Cond. No. | 884. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.652 | 
  | Model: | OLS | Adj. R-squared: | 0.617 | 
  | Method: | Least Squares | F-statistic: | 18.71 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.63e-05 | 
  | Time: | 00:18:56 | Log-Likelihood: | -100.98 | 
  | No. Observations: | 23 | AIC: | 208.0 | 
  | Df Residuals: | 20 | BIC: | 211.4 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -6.4545 | 156.661 | -0.041 | 0.968 | -333.244   320.335 | 
  | C(dose)[T.1] | 49.2703 | 13.656 | 3.608 | 0.002 | 20.785    77.755 | 
  | expression | 6.9804 | 18.013 | 0.388 | 0.702 | -30.595    44.556 | 
  | Omnibus: | 0.016 | Durbin-Watson: | 1.871 | 
  | Prob(Omnibus): | 0.992 | Jarque-Bera (JB): | 0.205 | 
  | Skew: | 0.037 | Prob(JB): | 0.903 | 
  | Kurtosis: | 2.544 | Cond. No. | 328. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 00:18:56 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.425 | 
  | Model: | OLS | Adj. R-squared: | 0.398 | 
  | Method: | Least Squares | F-statistic: | 15.52 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000751 | 
  | Time: | 00:18:56 | Log-Likelihood: | -106.74 | 
  | No. Observations: | 23 | AIC: | 217.5 | 
  | Df Residuals: | 21 | BIC: | 219.8 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -430.8903 | 129.735 | -3.321 | 0.003 | -700.689  -161.092 | 
  | expression | 56.9298 | 14.452 | 3.939 | 0.001 | 26.876    86.984 | 
  | Omnibus: | 0.959 | Durbin-Watson: | 1.902 | 
  | Prob(Omnibus): | 0.619 | Jarque-Bera (JB): | 0.783 | 
  | Skew: | 0.106 | Prob(JB): | 0.676 | 
  | Kurtosis: | 2.122 | Cond. No. | 215. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 3.925 | 0.071 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.585 | 
  | Model: | OLS | Adj. R-squared: | 0.471 | 
  | Method: | Least Squares | F-statistic: | 5.162 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0181 | 
  | Time: | 00:18:56 | Log-Likelihood: | -68.710 | 
  | No. Observations: | 15 | AIC: | 145.4 | 
  | Df Residuals: | 11 | BIC: | 148.3 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -388.3678 | 406.947 | -0.954 | 0.360 | -1284.053   507.317 | 
  | C(dose)[T.1] | 70.3084 | 496.278 | 0.142 | 0.890 | -1021.992  1162.609 | 
  | expression | 51.1845 | 45.684 | 1.120 | 0.286 | -49.365   151.734 | 
  | expression:C(dose)[T.1] | -2.2545 | 55.751 | -0.040 | 0.968 | -124.961   120.452 | 
  | Omnibus: | 1.780 | Durbin-Watson: | 1.308 | 
  | Prob(Omnibus): | 0.411 | Jarque-Bera (JB): | 0.970 | 
  | Skew: | -0.212 | Prob(JB): | 0.616 | 
  | Kurtosis: | 1.828 | Cond. No. | 901. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.585 | 
  | Model: | OLS | Adj. R-squared: | 0.515 | 
  | Method: | Least Squares | F-statistic: | 8.445 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00514 | 
  | Time: | 00:18:56 | Log-Likelihood: | -68.711 | 
  | No. Observations: | 15 | AIC: | 143.4 | 
  | Df Residuals: | 12 | BIC: | 145.5 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -374.8876 | 223.490 | -1.677 | 0.119 | -861.831   112.056 | 
  | C(dose)[T.1] | 50.2482 | 13.673 | 3.675 | 0.003 | 20.456    80.040 | 
  | expression | 49.6707 | 25.072 | 1.981 | 0.071 | -4.957   104.298 | 
  | Omnibus: | 1.745 | Durbin-Watson: | 1.303 | 
  | Prob(Omnibus): | 0.418 | Jarque-Bera (JB): | 0.965 | 
  | Skew: | -0.215 | Prob(JB): | 0.617 | 
  | Kurtosis: | 1.835 | Cond. No. | 296. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 00:18:56 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.117 | 
  | Model: | OLS | Adj. R-squared: | 0.049 | 
  | Method: | Least Squares | F-statistic: | 1.725 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.212 | 
  | Time: | 00:18:56 | Log-Likelihood: | -74.365 | 
  | No. Observations: | 15 | AIC: | 152.7 | 
  | Df Residuals: | 13 | BIC: | 154.1 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -316.2706 | 312.241 | -1.013 | 0.330 | -990.825   358.284 | 
  | expression | 46.0931 | 35.092 | 1.314 | 0.212 | -29.718   121.904 | 
  | Omnibus: | 0.800 | Durbin-Watson: | 1.902 | 
  | Prob(Omnibus): | 0.670 | Jarque-Bera (JB): | 0.743 | 
  | Skew: | 0.312 | Prob(JB): | 0.690 | 
  | Kurtosis: | 2.106 | Cond. No. | 295. |