AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.649 | 0.430 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.24e-05 |
Time: | 04:10:33 | Log-Likelihood: | -100.52 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.6463 | 146.842 | 0.583 | 0.567 | -221.698 392.991 |
C(dose)[T.1] | 171.6585 | 217.909 | 0.788 | 0.441 | -284.429 627.747 |
expression | -4.1485 | 19.360 | -0.214 | 0.833 | -44.670 36.373 |
expression:C(dose)[T.1] | -15.1918 | 28.398 | -0.535 | 0.599 | -74.630 44.247 |
Omnibus: | 1.707 | Durbin-Watson: | 1.793 |
Prob(Omnibus): | 0.426 | Jarque-Bera (JB): | 1.061 |
Skew: | 0.176 | Prob(JB): | 0.588 |
Kurtosis: | 2.008 | Cond. No. | 494. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 19.42 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.06e-05 |
Time: | 04:10:33 | Log-Likelihood: | -100.70 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 139.1540 | 105.573 | 1.318 | 0.202 | -81.066 359.374 |
C(dose)[T.1] | 55.1889 | 8.931 | 6.179 | 0.000 | 36.558 73.820 |
expression | -11.2092 | 13.909 | -0.806 | 0.430 | -40.223 17.804 |
Omnibus: | 1.820 | Durbin-Watson: | 1.725 |
Prob(Omnibus): | 0.403 | Jarque-Bera (JB): | 1.039 |
Skew: | 0.092 | Prob(JB): | 0.595 |
Kurtosis: | 1.975 | Cond. No. | 191. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:10:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.2374 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.631 |
Time: | 04:10:33 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -3.7534 | 171.458 | -0.022 | 0.983 | -360.319 352.812 |
expression | 10.9010 | 22.372 | 0.487 | 0.631 | -35.624 57.426 |
Omnibus: | 3.549 | Durbin-Watson: | 2.468 |
Prob(Omnibus): | 0.170 | Jarque-Bera (JB): | 1.658 |
Skew: | 0.313 | Prob(JB): | 0.437 |
Kurtosis: | 1.843 | Cond. No. | 186. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.935 | 0.112 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.607 |
Model: | OLS | Adj. R-squared: | 0.499 |
Method: | Least Squares | F-statistic: | 5.653 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0136 |
Time: | 04:10:33 | Log-Likelihood: | -68.304 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 11 | BIC: | 147.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -2.4647 | 217.593 | -0.011 | 0.991 | -481.384 476.455 |
C(dose)[T.1] | -321.7075 | 304.208 | -1.058 | 0.313 | -991.265 347.850 |
expression | 10.5909 | 32.936 | 0.322 | 0.754 | -61.901 83.082 |
expression:C(dose)[T.1] | 52.8289 | 44.927 | 1.176 | 0.264 | -46.056 151.713 |
Omnibus: | 1.686 | Durbin-Watson: | 0.818 |
Prob(Omnibus): | 0.430 | Jarque-Bera (JB): | 1.022 |
Skew: | -0.305 | Prob(JB): | 0.600 |
Kurtosis: | 1.876 | Cond. No. | 412. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.557 |
Model: | OLS | Adj. R-squared: | 0.483 |
Method: | Least Squares | F-statistic: | 7.547 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00755 |
Time: | 04:10:33 | Log-Likelihood: | -69.192 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -189.8313 | 150.522 | -1.261 | 0.231 | -517.791 138.129 |
C(dose)[T.1] | 35.5103 | 16.213 | 2.190 | 0.049 | 0.184 70.836 |
expression | 38.9824 | 22.755 | 1.713 | 0.112 | -10.597 88.561 |
Omnibus: | 2.321 | Durbin-Watson: | 0.612 |
Prob(Omnibus): | 0.313 | Jarque-Bera (JB): | 1.194 |
Skew: | -0.332 | Prob(JB): | 0.551 |
Kurtosis: | 1.788 | Cond. No. | 149. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:10:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.380 |
Model: | OLS | Adj. R-squared: | 0.332 |
Method: | Least Squares | F-statistic: | 7.969 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0144 |
Time: | 04:10:33 | Log-Likelihood: | -71.714 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 13 | BIC: | 148.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -337.5490 | 152.960 | -2.207 | 0.046 | -667.999 -7.099 |
expression | 63.5390 | 22.508 | 2.823 | 0.014 | 14.914 112.164 |
Omnibus: | 1.356 | Durbin-Watson: | 1.109 |
Prob(Omnibus): | 0.508 | Jarque-Bera (JB): | 0.803 |
Skew: | -0.035 | Prob(JB): | 0.669 |
Kurtosis: | 1.868 | Cond. No. | 133. |