AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.956 | 0.340 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.45e-05 |
Time: | 04:42:14 | Log-Likelihood: | -100.41 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 4.2937 | 105.580 | 0.041 | 0.968 | -216.688 225.275 |
C(dose)[T.1] | -17.2190 | 166.287 | -0.104 | 0.919 | -365.263 330.825 |
expression | 6.0426 | 12.760 | 0.474 | 0.641 | -20.665 32.750 |
expression:C(dose)[T.1] | 8.8299 | 20.341 | 0.434 | 0.669 | -33.744 51.404 |
Omnibus: | 0.564 | Durbin-Watson: | 2.065 |
Prob(Omnibus): | 0.754 | Jarque-Bera (JB): | 0.612 |
Skew: | 0.074 | Prob(JB): | 0.736 |
Kurtosis: | 2.215 | Cond. No. | 392. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 19.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.78e-05 |
Time: | 04:42:14 | Log-Likelihood: | -100.53 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.4102 | 80.622 | -0.303 | 0.765 | -192.584 143.764 |
C(dose)[T.1] | 54.8619 | 8.708 | 6.300 | 0.000 | 36.697 73.027 |
expression | 9.5175 | 9.734 | 0.978 | 0.340 | -10.786 29.821 |
Omnibus: | 1.218 | Durbin-Watson: | 2.058 |
Prob(Omnibus): | 0.544 | Jarque-Bera (JB): | 0.849 |
Skew: | -0.021 | Prob(JB): | 0.654 |
Kurtosis: | 2.060 | Cond. No. | 157. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:42:14 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.008219 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.929 |
Time: | 04:42:15 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 91.6958 | 132.324 | 0.693 | 0.496 | -183.487 366.879 |
expression | -1.4637 | 16.145 | -0.091 | 0.929 | -35.039 32.112 |
Omnibus: | 3.497 | Durbin-Watson: | 2.470 |
Prob(Omnibus): | 0.174 | Jarque-Bera (JB): | 1.613 |
Skew: | 0.292 | Prob(JB): | 0.447 |
Kurtosis: | 1.842 | Cond. No. | 153. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.156 | 0.700 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.327 |
Method: | Least Squares | F-statistic: | 3.265 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0631 |
Time: | 04:42:15 | Log-Likelihood: | -70.524 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.0026 | 293.704 | 0.167 | 0.871 | -597.436 695.441 |
C(dose)[T.1] | -269.4526 | 578.051 | -0.466 | 0.650 | -1541.735 1002.830 |
expression | 1.8864 | 30.045 | 0.063 | 0.951 | -64.242 68.015 |
expression:C(dose)[T.1] | 34.7931 | 61.939 | 0.562 | 0.586 | -101.534 171.120 |
Omnibus: | 1.073 | Durbin-Watson: | 1.081 |
Prob(Omnibus): | 0.585 | Jarque-Bera (JB): | 0.913 |
Skew: | -0.512 | Prob(JB): | 0.634 |
Kurtosis: | 2.357 | Cond. No. | 821. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.026 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0260 |
Time: | 04:42:15 | Log-Likelihood: | -70.736 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -30.9616 | 249.466 | -0.124 | 0.903 | -574.501 512.578 |
C(dose)[T.1] | 55.0176 | 21.493 | 2.560 | 0.025 | 8.189 101.847 |
expression | 10.0731 | 25.513 | 0.395 | 0.700 | -45.516 65.662 |
Omnibus: | 1.959 | Durbin-Watson: | 0.928 |
Prob(Omnibus): | 0.376 | Jarque-Bera (JB): | 1.458 |
Skew: | -0.714 | Prob(JB): | 0.482 |
Kurtosis: | 2.456 | Cond. No. | 307. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:42:15 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.159 |
Model: | OLS | Adj. R-squared: | 0.094 |
Method: | Least Squares | F-statistic: | 2.452 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.141 |
Time: | 04:42:15 | Log-Likelihood: | -74.004 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 422.1777 | 209.984 | 2.011 | 0.066 | -31.466 875.821 |
expression | -34.7285 | 22.177 | -1.566 | 0.141 | -82.638 13.181 |
Omnibus: | 0.804 | Durbin-Watson: | 1.272 |
Prob(Omnibus): | 0.669 | Jarque-Bera (JB): | 0.757 |
Skew: | -0.341 | Prob(JB): | 0.685 |
Kurtosis: | 2.136 | Cond. No. | 216. |