AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.079 | 0.782 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 13.01 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 7.50e-05 |
Time: | 22:47:53 | Log-Likelihood: | -100.27 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -143.2958 | 231.231 | -0.620 | 0.543 | -627.267 340.676 |
C(dose)[T.1] | 545.3135 | 436.349 | 1.250 | 0.227 | -367.975 1458.602 |
expression | 22.0773 | 25.839 | 0.854 | 0.404 | -32.004 76.158 |
expression:C(dose)[T.1] | -53.7187 | 47.415 | -1.133 | 0.271 | -152.959 45.522 |
Omnibus: | 0.088 | Durbin-Watson: | 1.901 |
Prob(Omnibus): | 0.957 | Jarque-Bera (JB): | 0.278 |
Skew: | -0.106 | Prob(JB): | 0.870 |
Kurtosis: | 2.505 | Cond. No. | 1.11e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.61 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.72e-05 |
Time: | 22:47:53 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -0.5822 | 195.278 | -0.003 | 0.998 | -407.924 406.760 |
C(dose)[T.1] | 51.1289 | 11.768 | 4.345 | 0.000 | 26.581 75.677 |
expression | 6.1246 | 21.818 | 0.281 | 0.782 | -39.387 51.636 |
Omnibus: | 0.343 | Durbin-Watson: | 2.004 |
Prob(Omnibus): | 0.843 | Jarque-Bera (JB): | 0.498 |
Skew: | 0.070 | Prob(JB): | 0.780 |
Kurtosis: | 2.293 | Cond. No. | 413. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.321 |
Model: | OLS | Adj. R-squared: | 0.288 |
Method: | Least Squares | F-statistic: | 9.905 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00486 |
Time: | 22:47:53 | Log-Likelihood: | -108.66 |
No. Observations: | 23 | AIC: | 221.3 |
Df Residuals: | 21 | BIC: | 223.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -553.9103 | 201.415 | -2.750 | 0.012 | -972.775 -135.046 |
expression | 69.4886 | 22.079 | 3.147 | 0.005 | 23.573 115.405 |
Omnibus: | 0.944 | Durbin-Watson: | 2.722 |
Prob(Omnibus): | 0.624 | Jarque-Bera (JB): | 0.917 |
Skew: | 0.400 | Prob(JB): | 0.632 |
Kurtosis: | 2.439 | Cond. No. | 313. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.131 | 0.043 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.615 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 5.847 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0122 |
Time: | 22:47:53 | Log-Likelihood: | -68.149 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -315.6565 | 366.161 | -0.862 | 0.407 | -1121.571 490.258 |
C(dose)[T.1] | -34.2276 | 440.459 | -0.078 | 0.939 | -1003.671 935.216 |
expression | 43.5382 | 41.599 | 1.047 | 0.318 | -48.021 135.097 |
expression:C(dose)[T.1] | 7.0062 | 49.325 | 0.142 | 0.890 | -101.558 115.570 |
Omnibus: | 2.390 | Durbin-Watson: | 0.516 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.828 |
Skew: | -0.782 | Prob(JB): | 0.401 |
Kurtosis: | 2.308 | Cond. No. | 860. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.614 |
Model: | OLS | Adj. R-squared: | 0.550 |
Method: | Least Squares | F-statistic: | 9.539 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00331 |
Time: | 22:47:54 | Log-Likelihood: | -68.163 |
No. Observations: | 15 | AIC: | 142.3 |
Df Residuals: | 12 | BIC: | 144.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -359.5037 | 188.723 | -1.905 | 0.081 | -770.696 51.689 |
C(dose)[T.1] | 28.2906 | 16.085 | 1.759 | 0.104 | -6.755 63.336 |
expression | 48.5215 | 21.421 | 2.265 | 0.043 | 1.850 95.193 |
Omnibus: | 2.368 | Durbin-Watson: | 0.507 |
Prob(Omnibus): | 0.306 | Jarque-Bera (JB): | 1.814 |
Skew: | -0.750 | Prob(JB): | 0.404 |
Kurtosis: | 2.194 | Cond. No. | 263. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:54 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.514 |
Model: | OLS | Adj. R-squared: | 0.477 |
Method: | Least Squares | F-statistic: | 13.77 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00262 |
Time: | 22:47:54 | Log-Likelihood: | -69.883 |
No. Observations: | 15 | AIC: | 143.8 |
Df Residuals: | 13 | BIC: | 145.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -539.5995 | 170.820 | -3.159 | 0.008 | -908.633 -170.566 |
expression | 70.1399 | 18.904 | 3.710 | 0.003 | 29.301 110.979 |
Omnibus: | 1.238 | Durbin-Watson: | 0.972 |
Prob(Omnibus): | 0.539 | Jarque-Bera (JB): | 1.017 |
Skew: | -0.553 | Prob(JB): | 0.601 |
Kurtosis: | 2.366 | Cond. No. | 221. |