AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.338 0.567 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.655
Method: Least Squares F-statistic: 14.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.13e-05
Time: 03:48:10 Log-Likelihood: -99.184
No. Observations: 23 AIC: 206.4
Df Residuals: 19 BIC: 210.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.0142 71.665 0.447 0.660 -117.982 182.010
C(dose)[T.1] 303.0332 144.826 2.092 0.050 -0.091 606.157
expression 2.8627 9.214 0.311 0.759 -16.423 22.148
expression:C(dose)[T.1] -32.7755 18.923 -1.732 0.099 -72.383 6.832
Omnibus: 1.743 Durbin-Watson: 1.971
Prob(Omnibus): 0.418 Jarque-Bera (JB): 1.506
Skew: 0.570 Prob(JB): 0.471
Kurtosis: 2.480 Cond. No. 320.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.40e-05
Time: 03:48:10 Log-Likelihood: -100.87
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.2578 65.716 1.404 0.176 -44.823 229.339
C(dose)[T.1] 52.6141 8.785 5.989 0.000 34.289 70.939
expression -4.9078 8.441 -0.581 0.567 -22.515 12.699
Omnibus: 0.630 Durbin-Watson: 2.085
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.680
Skew: 0.191 Prob(JB): 0.712
Kurtosis: 2.249 Cond. No. 119.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:48:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.7835
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.386
Time: 03:48:10 Log-Likelihood: -112.68
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 172.3943 104.942 1.643 0.115 -45.844 390.633
expression -12.0636 13.629 -0.885 0.386 -40.406 16.279
Omnibus: 2.470 Durbin-Watson: 2.704
Prob(Omnibus): 0.291 Jarque-Bera (JB): 1.250
Skew: 0.173 Prob(JB): 0.535
Kurtosis: 1.912 Cond. No. 116.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.823 0.382 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.498
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 3.634
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0484
Time: 03:48:11 Log-Likelihood: -70.135
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.7084 123.639 0.394 0.701 -223.418 320.835
C(dose)[T.1] -41.6866 163.820 -0.254 0.804 -402.252 318.878
expression 2.7780 18.269 0.152 0.882 -37.431 42.987
expression:C(dose)[T.1] 13.0748 23.937 0.546 0.596 -39.610 65.760
Omnibus: 1.937 Durbin-Watson: 0.760
Prob(Omnibus): 0.380 Jarque-Bera (JB): 1.172
Skew: -0.388 Prob(JB): 0.557
Kurtosis: 1.872 Cond. No. 202.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.632
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0188
Time: 03:48:11 Log-Likelihood: -70.335
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.6114 77.983 -0.033 0.974 -172.522 167.300
C(dose)[T.1] 47.3765 15.357 3.085 0.009 13.915 80.838
expression 10.3937 11.454 0.907 0.382 -14.563 35.350
Omnibus: 2.299 Durbin-Watson: 0.765
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.249
Skew: -0.383 Prob(JB): 0.535
Kurtosis: 1.811 Cond. No. 72.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:48:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.075
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 1.055
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.323
Time: 03:48:11 Log-Likelihood: -74.715
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.8723 100.293 -0.088 0.931 -225.542 207.797
expression 15.0085 14.610 1.027 0.323 -16.554 46.571
Omnibus: 1.233 Durbin-Watson: 1.449
Prob(Omnibus): 0.540 Jarque-Bera (JB): 0.826
Skew: 0.199 Prob(JB): 0.662
Kurtosis: 1.922 Cond. No. 71.9