AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.041 | 0.320 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.88e-05 |
Time: | 03:51:40 | Log-Likelihood: | -100.47 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 132.7629 | 100.259 | 1.324 | 0.201 | -77.081 342.607 |
C(dose)[T.1] | 38.4480 | 143.904 | 0.267 | 0.792 | -262.747 339.643 |
expression | -12.3705 | 15.760 | -0.785 | 0.442 | -45.356 20.615 |
expression:C(dose)[T.1] | 2.1158 | 22.887 | 0.092 | 0.927 | -45.786 50.018 |
Omnibus: | 0.819 | Durbin-Watson: | 1.782 |
Prob(Omnibus): | 0.664 | Jarque-Bera (JB): | 0.838 |
Skew: | 0.353 | Prob(JB): | 0.658 |
Kurtosis: | 2.387 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.71e-05 |
Time: | 03:51:40 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 126.3921 | 70.994 | 1.780 | 0.090 | -21.700 274.484 |
C(dose)[T.1] | 51.7263 | 8.695 | 5.949 | 0.000 | 33.589 69.863 |
expression | -11.3673 | 11.141 | -1.020 | 0.320 | -34.607 11.873 |
Omnibus: | 0.907 | Durbin-Watson: | 1.787 |
Prob(Omnibus): | 0.635 | Jarque-Bera (JB): | 0.902 |
Skew: | 0.376 | Prob(JB): | 0.637 |
Kurtosis: | 2.388 | Cond. No. | 108. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:51:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.730 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.203 |
Time: | 03:51:40 | Log-Likelihood: | -112.19 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 226.7419 | 112.001 | 2.024 | 0.056 | -6.177 459.661 |
expression | -23.4027 | 17.794 | -1.315 | 0.203 | -60.407 13.601 |
Omnibus: | 1.436 | Durbin-Watson: | 2.476 |
Prob(Omnibus): | 0.488 | Jarque-Bera (JB): | 1.269 |
Skew: | 0.443 | Prob(JB): | 0.530 |
Kurtosis: | 2.266 | Cond. No. | 104. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.873 | 0.369 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.537 |
Model: | OLS | Adj. R-squared: | 0.411 |
Method: | Least Squares | F-statistic: | 4.255 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0318 |
Time: | 03:51:40 | Log-Likelihood: | -69.523 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -90.3117 | 113.466 | -0.796 | 0.443 | -340.049 159.425 |
C(dose)[T.1] | 271.4610 | 202.490 | 1.341 | 0.207 | -174.218 717.139 |
expression | 26.6428 | 19.074 | 1.397 | 0.190 | -15.340 68.625 |
expression:C(dose)[T.1] | -37.5437 | 34.112 | -1.101 | 0.295 | -112.624 37.537 |
Omnibus: | 3.874 | Durbin-Watson: | 1.162 |
Prob(Omnibus): | 0.144 | Jarque-Bera (JB): | 1.808 |
Skew: | -0.817 | Prob(JB): | 0.405 |
Kurtosis: | 3.473 | Cond. No. | 202. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.486 |
Model: | OLS | Adj. R-squared: | 0.401 |
Method: | Least Squares | F-statistic: | 5.677 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0184 |
Time: | 03:51:40 | Log-Likelihood: | -70.306 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -20.8117 | 95.097 | -0.219 | 0.830 | -228.010 186.386 |
C(dose)[T.1] | 49.2180 | 15.197 | 3.239 | 0.007 | 16.107 82.329 |
expression | 14.9040 | 15.952 | 0.934 | 0.369 | -19.853 49.661 |
Omnibus: | 1.654 | Durbin-Watson: | 0.876 |
Prob(Omnibus): | 0.437 | Jarque-Bera (JB): | 1.323 |
Skew: | -0.630 | Prob(JB): | 0.516 |
Kurtosis: | 2.272 | Cond. No. | 76.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:51:40 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.037 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.4993 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.492 |
Time: | 03:51:40 | Log-Likelihood: | -75.017 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.9022 | 124.607 | 0.047 | 0.963 | -263.296 275.100 |
expression | 14.8256 | 20.982 | 0.707 | 0.492 | -30.503 60.154 |
Omnibus: | 3.210 | Durbin-Watson: | 1.637 |
Prob(Omnibus): | 0.201 | Jarque-Bera (JB): | 1.413 |
Skew: | 0.374 | Prob(JB): | 0.493 |
Kurtosis: | 1.696 | Cond. No. | 76.3 |