AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.459 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.31e-05 |
Time: | 03:35:01 | Log-Likelihood: | -100.39 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 455.2187 | 376.268 | 1.210 | 0.241 | -332.319 1242.757 |
C(dose)[T.1] | -374.2738 | 505.540 | -0.740 | 0.468 | -1432.380 683.833 |
expression | -37.1420 | 34.846 | -1.066 | 0.300 | -110.075 35.791 |
expression:C(dose)[T.1] | 39.7192 | 47.790 | 0.831 | 0.416 | -60.307 139.745 |
Omnibus: | 0.256 | Durbin-Watson: | 2.038 |
Prob(Omnibus): | 0.880 | Jarque-Bera (JB): | 0.443 |
Skew: | 0.046 | Prob(JB): | 0.801 |
Kurtosis: | 2.326 | Cond. No. | 1.62e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.26e-05 |
Time: | 03:35:01 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 227.2297 | 255.543 | 0.889 | 0.384 | -305.824 760.283 |
C(dose)[T.1] | 45.7193 | 14.202 | 3.219 | 0.004 | 16.094 75.345 |
expression | -16.0254 | 23.662 | -0.677 | 0.506 | -65.384 33.333 |
Omnibus: | 0.263 | Durbin-Watson: | 1.977 |
Prob(Omnibus): | 0.877 | Jarque-Bera (JB): | 0.448 |
Skew: | 0.011 | Prob(JB): | 0.799 |
Kurtosis: | 2.317 | Cond. No. | 631. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:35:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.479 |
Model: | OLS | Adj. R-squared: | 0.454 |
Method: | Least Squares | F-statistic: | 19.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000252 |
Time: | 03:35:02 | Log-Likelihood: | -105.60 |
No. Observations: | 23 | AIC: | 215.2 |
Df Residuals: | 21 | BIC: | 217.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 886.7192 | 183.676 | 4.828 | 0.000 | 504.744 1268.694 |
expression | -76.3531 | 17.371 | -4.395 | 0.000 | -112.478 -40.228 |
Omnibus: | 5.826 | Durbin-Watson: | 2.203 |
Prob(Omnibus): | 0.054 | Jarque-Bera (JB): | 1.744 |
Skew: | 0.096 | Prob(JB): | 0.418 |
Kurtosis: | 1.665 | Cond. No. | 376. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.819 | 0.049 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.609 |
Model: | OLS | Adj. R-squared: | 0.502 |
Method: | Least Squares | F-statistic: | 5.712 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0132 |
Time: | 03:35:02 | Log-Likelihood: | -68.256 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 551.0206 | 424.613 | 1.298 | 0.221 | -383.546 1485.587 |
C(dose)[T.1] | -68.4303 | 471.253 | -0.145 | 0.887 | -1105.652 968.791 |
expression | -50.7940 | 44.586 | -1.139 | 0.279 | -148.928 47.340 |
expression:C(dose)[T.1] | 12.6699 | 49.401 | 0.256 | 0.802 | -96.060 121.400 |
Omnibus: | 1.249 | Durbin-Watson: | 1.459 |
Prob(Omnibus): | 0.536 | Jarque-Bera (JB): | 0.894 |
Skew: | -0.296 | Prob(JB): | 0.640 |
Kurtosis: | 1.961 | Cond. No. | 1.01e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.607 |
Model: | OLS | Adj. R-squared: | 0.541 |
Method: | Least Squares | F-statistic: | 9.256 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00370 |
Time: | 03:35:02 | Log-Likelihood: | -68.301 |
No. Observations: | 15 | AIC: | 142.6 |
Df Residuals: | 12 | BIC: | 144.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 452.7597 | 175.792 | 2.576 | 0.024 | 69.743 835.777 |
C(dose)[T.1] | 52.3805 | 13.374 | 3.917 | 0.002 | 23.242 81.519 |
expression | -40.4732 | 18.436 | -2.195 | 0.049 | -80.642 -0.304 |
Omnibus: | 0.924 | Durbin-Watson: | 1.383 |
Prob(Omnibus): | 0.630 | Jarque-Bera (JB): | 0.805 |
Skew: | -0.331 | Prob(JB): | 0.669 |
Kurtosis: | 2.079 | Cond. No. | 257. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:35:02 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.104 |
Model: | OLS | Adj. R-squared: | 0.035 |
Method: | Least Squares | F-statistic: | 1.508 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.241 |
Time: | 03:35:02 | Log-Likelihood: | -74.477 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 405.8094 | 254.342 | 1.596 | 0.135 | -143.664 955.283 |
expression | -32.6420 | 26.579 | -1.228 | 0.241 | -90.061 24.777 |
Omnibus: | 0.537 | Durbin-Watson: | 1.811 |
Prob(Omnibus): | 0.765 | Jarque-Bera (JB): | 0.586 |
Skew: | 0.204 | Prob(JB): | 0.746 |
Kurtosis: | 2.122 | Cond. No. | 256. |